首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin is known to induce hepatocyte swelling, which triggers via integrins and c-Src kinase an activation of the epidermal growth factor receptor (EGFR) and subsequent cell proliferation (1). Free fatty acids (FFAs) are known to induce lipoapoptosis in liver cells in a c-Jun-NH2-terminal kinase (JNK)-dependent, but death receptor-independent way (2). As non-alcoholic steatohepatitis (NASH) is associated with hyperinsulinemia and increased FFA-blood levels, the interplay between insulin and FFA was studied with regard to hepatocyte proliferation and apoptosis in isolated rat and mouse hepatocytes. Saturated long chain FFAs induced apoptosis and JNK activation in primary rat hepatocytes, but did not activate the CD95 (Fas, APO-1) system, whereas insulin triggered EGFR activation and hepatocyte proliferation. Coadministration of insulin and FFAs, however, abolished hepatocyte proliferation and triggered CD95-dependent apoptosis due to a JNK-dependent association of the activated EGFR with CD95, subsequent CD95 tyrosine phosphorylation and formation of the death-inducing signaling complex (DISC). JNK inhibition restored the proliferative insulin effect in presence of FFAs and prevented EGFR/CD95 association, CD95 tyrosine phosphorylation and DISC formation. Likewise, in presence of FFAs insulin increased apoptosis in hepatocytes from wild type but not from Alb-Cre-FASfl/fl mice, which lack functional CD95. It is concluded that FFAs can shift insulin-induced hepatocyte proliferation toward hepatocyte apoptosis by triggering a JNK signal, which allows activated EGFR to associate with CD95 and to trigger CD95-dependent apoptosis. Such phenomena may contribute to the pathogenesis of NASH.  相似文献   

2.
The aim of the study was to analyze whether the proliferative effects of insulin in rat liver involve cross-signaling toward the epidermal growth factor receptor (EGFR) and whether this is mediated by insulin-induced hepatocyte swelling. Studies were performed in the perfused rat liver and in primary rat hepatocytes. Insulin (35 nmol/liter) induced phosphorylation of the EGFR at position Tyr845 and Tyr1173, but not at Tyr1045, suggesting that EGF is not involved in insulin-induced EGFR activation. Insulin-induced EGFR phosphorylation and subsequent ERK1/2 phosphorylation were sensitive to bumetanide, indicating an involvement of insulin-induced hepatocyte swelling. In line with this, hypoosmotic (225 mosmol/liter) hepatocyte swelling also induced EGFR and ERK1/2 activation. Insulin- and hypoosmolarity-induced EGFR activation were sensitive to inhibition by an integrin-antagonistic RGD peptide, an integrin β1 subtype-blocking antibody, and the c-Src inhibitor PP-2, indicating the involvement of the recently described integrin-dependent osmosensing/signaling pathway (Schliess, F., Reissmann, R., Reinehr, R., vom Dahl, S., and Häussinger, D. (2004) J. Biol. Chem. 279, 21294–21301). As shown by immunoprecipitation studies, insulin and hypoosmolarity induced a rapid, RGD peptide-, integrin β1-blocking antibody and PP-2-sensitive association of c-Src with the EGFR. As for control, insulin-induced insulin receptor substrate-1 phosphorylation remained unaffected by the RGD peptide, PP-2, or inhibition of the EGFR tyrosine kinase activity by AG1478. Both insulin and hypoosmolarity induced a significant increase in BrdU uptake in primary rat hepatocytes, which was sensitive to RGD peptide-, integrin β1-blocking antibody, PP-2, AG1478, and PD098059. It is concluded that insulin- or hypoosmolarity-induced hepatocyte swelling triggers an integrin- and c-Src kinase-dependent EGFR activation, which may explain the proliferative effects of insulin.  相似文献   

3.
Exposure of A431 squamous and MDA-MB-231 mammary carcinoma cells to ionizing radiation has been associated with short transient increases in epidermal growth factor receptor (EGFR) tyrosine phosphorylation and activation of the mitogen-activated protein kinase (MAPK) and c-Jun NH(2)-terminal kinase (JNK) pathways. Irradiation (2 Gy) of A431 and MDA-MB-231 cells caused immediate primary activations (0-10 min) of the EGFR and the MAPK and JNK pathways, which were surprisingly followed by later prolonged secondary activations (90-240 min). Primary and secondary activation of the EGFR was abolished by molecular inhibition of EGFR function. The primary and secondary activation of the MAPK pathway was abolished by molecular inhibition of either EGFR or Ras function. In contrast, molecular inhibition of EGFR function abolished the secondary but not the primary activation of the JNK pathway. Inhibition of tumor necrosis factor alpha receptor function by use of neutralizing monoclonal antibodies blunted primary activation of the JNK pathway. Addition of a neutralizing monoclonal antibody versus transforming growth factor alpha (TGFalpha) had no effect on the primary activation of either the EGFR or the MAPK and JNK pathways after irradiation but abolished the secondary activation of EGFR, MAPK, and JNK. Irradiation of cells increased pro-TGFalpha cleavage 120-180 min after exposure. In agreement with radiation-induced release of a soluble factor, activation of the EGFR and the MAPK and JNK pathways could be induced in nonirradiated cells by the transfer of media from irradiated cells 120 min after irradiation. The ability of the transferred media to cause MAPK and JNK activation was blocked when media were incubated with a neutralizing antibody to TGFalpha. Thus radiation causes primary and secondary activation of the EGFR and the MAPK and JNK pathways in autocrine-regulated carcinoma cells. Secondary activation of the EGFR and the MAPK and JNK pathways is dependent on radiation-induced cleavage and autocrine action of TGFalpha. Neutralization of TGFalpha function by an anti-TGFalpha antibody or inhibition of MAPK function by MEK1/2 inhibitors (PD98059 and U0126) radiosensitized A431 and MDA-MB-231 cells after irradiation in apoptosis, 3-[4, 5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), and clonogenic assays. These data demonstrate that disruption of the TGFalpha-EGFR-MAPK signaling module represents a strategy to decrease carcinoma cell growth and survival after irradiation.  相似文献   

4.
《Cellular signalling》2014,26(10):2161-2166
Hepassocin (HPS) is a secreted protein with mitogenic activity on primary hepatocytes and protects hepatocytes from chemically-induced injury. Our previous studies showed that HPS stimulates proliferation of hepatocytes in an ERK pathway-dependent manner. However, the molecular mechanism of HPS-induced activation of the ERK pathway remains unclear. In this study, we found that HPS induced the phosphorylation of the epidermal growth factor receptor (EGFR) in the human L02 hepatocyte cell line, and this event was concomitant with the activation of the non-receptor tyrosine kinase Src. Specific inhibition of EGFR kinase activity by gefitinib or down-regulation of EGFR by specific EGFR siRNAs prevented HPS-induced activation of the ERK pathway and proliferation of L02 cells. Furthermore, inhibition of Src activity significantly blocked HPS-induced activation of the EGFR, which was suggestive of a ligand-independent transactivation mechanism of EGFR itself as well as ERK phosphorylation and proliferation of L02 cells. These results indicate that EGFR plays an important role in the mitogenic signaling induced by HPS in L02 cell lines and may further stimulate research on the role of HPS in hepatocytes within biological processes in human health and disease.  相似文献   

5.
The epidermal growth factor receptor (EGFR) can be activated by both direct ligand binding and cross-talk with other molecules, such as integrins. This integrin-mediated cross-talk with growth factor receptors participates in regulating cell proliferation, survival, migration, and invasion. Previous studies have shown that ligand-dependent EGFR activation is inhibited by GM3, the predominant ganglioside of epithelial cells, but the effect of GM3 on ligand-independent, integrin-EGFR cross-talk is unknown. Using a squamous carcinoma cell line we show that endogenous accumulation of GM3 disrupts the ligand-independent association of the integrin beta1 subunit with EGFR and results in inhibition of cell proliferation. Consistently, endogenous depletion of GM3 markedly increases the association of EGFR with tyrosine-phosphorylated integrin beta1 and promotes cell proliferation. The ligand-independent stimulation of EGFR does not require focal adhesion kinase phosphorylation or cytoskeletal rearrangement. Stimulation of EGFR and mitogen-activated protein kinase signaling by GM3 depletion involves the phosphorylation of EGFR at tyrosine residues 845, 1068, and 1148 but not 1086 or 1173. The specific blockade of phosphorylation at Tyr-845 with Src family kinase inhibition and at Tyr-1148 with phosphatidylinositol 3-kinase inhibition suggests that GM3 inhibits integrin-induced, ligand-independent EGFR phosphorylation (cross-talk) through suppression of Src family kinase and phosphatidylinositol 3-kinase signaling.  相似文献   

6.
Human integrin alpha5 was transfected into the integrin alpha5/beta1-negative intestinal epithelial cell line Caco-2 to study EGF receptor (EGFR) and integrin alpha5/beta1 signaling interactions involved in epithelial cell proliferation. On uncoated or fibronectin-coated plastic, the integrin alpha5 and control (vector only) transfectants grew at similar rates. In the presence of the EGFR antagonistic mAb 225, the integrin alpha5 transfectants and controls were significantly growth inhibited on plastic. However, when cultured on fibronectin, the integrin alpha5 transfectants were not growth inhibited by mAb 225. The reversal of mAb 225-mediated growth inhibition on fibronectin for the integrin alpha5 transfectants correlated with activation of the EGFR, activation of MAPK, and expression of proliferating cell nuclear antigen. EGFR kinase activity was necessary for both MAPK activation and integrin alpha5/beta1-mediated cell proliferation. Although EGFR activation occurred when either the integrin alpha5-transfected or control cells were cultured on fibronectin, coprecipitation of the EGFR with SHC could be demonstrated only in the integrin alpha5-transfected cells. These results suggest that integrin alpha5/beta1 mediates fibronectin-induced epithelial cell proliferation through activation of the EGFR.  相似文献   

7.
Previous studies have indicated that the urokinase-type plasminogen activator receptor (uPAR) can functionally interact with integrins thereby modulating integrin activity. We have previously demonstrated that treatment of fibroblasts with the uPAR ligand, P25, results in an increase in the activation of the beta1 integrin and a 35-fold increase in fibronectin matrix assembly (Monaghan, E., Gueorguiev, V., Wilkins-Port, C., and McKeown-Longo, P. J. (2004) J. Biol. Chem. 279, 1400-1407). Experiments were conducted to address the mechanism of uPAR regulation of matrix assembly. Treatment of fibroblasts with P25 led to an increase in the activation of the epidermal growth factor receptor (EGFR) and a colocalization of activated EGFR with beta1 integrins in cell matrix contacts. The effects of P25 on matrix assembly and beta1 integrin activation were inhibited by pretreatment with EGFR or Src kinase inhibitors, suggesting a role for both Src and EGFR in integrin activation by uPAR. Phosphorylation of EGFR in response to P25 occurred on Tyr-845, an Src-dependent phosphorylation site and was inhibited by PP2, the Src kinase inhibitor, consistent with Src kinase lying upstream of EGFR and integrin activation. Cells null for Src kinases also showed a loss of P25-induced matrix assembly, integrin activation, and EGFR phosphorylation. These P25-induced effects were restored following Src re-expression. The effects of P25 were specific for uPAR as enhanced matrix assembly by P25 was not seen in uPAR-/- cells, but was restored upon uPAR re-expression. These data provide evidence for a novel pathway of fibronectin matrix assembly through the uPAR-dependent sequential activation of Src kinase, EGFR, and beta1 integrin.  相似文献   

8.
Compound 5 (Cpd 5), a synthetic K vitamin analogue, or 2-(2-mercaptoethanol)-3-methyl-1,4-naphthoquinone, is a potent inhibitor of epidermal growth factor (EGF)-induced rat hepatocyte DNA synthesis and induces EGF receptor (EGFR) tyrosine phosphorylation. To understand the cellular responses to Cpd 5, its effects on the EGF signal transduction pathway were examined and compared to those of the stimulant, EGF. Cpd 5 induced a cellular response program that included the induction of EGFR tyrosine phosphorylation and the activation of the mitogen-activated protein kinase (MAPK) cascade. EGFR tyrosine phosphorylation was induced by Cpd 5 in a time- and dose-dependent manner. Coimmunoprecipitation studies demonstrated that both EGF and Cpd 5 induced tyrosine phosphorylation of EGFR was associated with increased amounts of adapter proteins Shc and Grb2, and the Ras GTP-GDP exchange protein Sos, indicating the formation of functional EGFR complexes. Although EGFR phosphorylation was induced both by the stimulant EGF and the inhibitor Cpd 5, the timing and intensity of activation by EGF and Cpd 5 were different. EGF activated EGFR transiently, whereas Cpd 5 induced an intense and sustained activation. Cpd 5-altered cells had a decreased ability to dephosphorylate tyrosine phosphorylated EGFR, providing evidence for an inhibition of tyrosine phosphatase activity. Both EGF and Cpd 5 caused an induction of phospho-extracellular response kinase (ERK), which was also more sustained with Cpd 5. Moreover, whereas Cpd 5 induced a striking translocation of phosphorylated ERK from cytosol to the nucleus, no significant nuclear translocation occurred after stimulation with EGF. The data suggest that this novel compound causes growth inhibition through antagonism of EGFR phosphatases and consequent induction of EGFR and ERK phosphorylation. This is supported by experiments with PD 153035 and PD 098059, antagonists of phosphorylation of EGFR and MAP kinase kinase (MEK), respectively, which both antagonized Cpd 5-induced phosphorylation and the inhibition of DNA synthesis. These results imply a mechanism of cell growth inhibition associated with intense and prolonged protein tyrosine phosphorylation. Protein tyrosine phosphatases may thus be a novel target for drugs designed to inhibit cell growth.  相似文献   

9.
Little is known about lung carcinoma epidermal growth factor (EGF) kinase pathway signaling within the context of the tissue microenvironment. We quantitatively profiled the phosphorylation and abundance of signal pathway proteins relevant to the EGF receptor within laser capture microdissected untreated, human non-small cell lung cancer (NSCLC) (n = 25) of known epidermal growth factor receptor (EGFR) tyrosine kinase domain mutation status. We measured six phosphorylation sites on EGFR to evaluate whether EGFR mutation status in vivo was associated with the coordinated phosphorylation of specific multiple phosphorylation sites on the EGFR and downstream proteins. Reverse phase protein array quantitation of NSCLC revealed simultaneous increased phosphorylation of EGFR residues Tyr-1148 (p < 0.044) and Tyr-1068 (p < 0.026) and decreased phosphorylation of EGFR Tyr-1045 (p < 0.002), HER2 Tyr-1248 (p < 0.015), IRS-1 Ser-612 (p < 0.001), and SMAD Ser-465/467 (p < 0.011) across all classes of mutated EGFR patient samples compared with wild type. To explore which subset of correlations was influenced by ligand induction versus an intrinsic phenotype of the EGFR mutants, we profiled the time course of 115 cellular signal proteins for EGF ligand-stimulated (three dosages) NSCLC mutant and wild type cultured cell lines. EGFR mutant cell lines (H1975 L858R) displayed a pattern of EGFR Tyr-1045 and HER2 Tyr-1248 phosphorylation similar to that found in tissue. Persistence of phosphorylation for AKT Ser-473 following ligand stimulation was found for the mutant. These data suggest that a higher proportion of the EGFR mutant carcinoma cells may exhibit activation of the phosphatidylinositol 3-kinase/protein kinase B (AKT)/mammalian target of rapamycin (MTOR) pathway through Tyr-1148 and Tyr-1068 and suppression of IRS-1 Ser-612, altered heterodimerization with ERBB2, reduced response to transforming growth factor beta suppression, and reduced ubiquitination/degradation of the EGFR through EGFR Tyr-1045, thus providing a survival advantage. This is the first comparison of multiple, site-specific phosphoproteins with the EGFR tyrosine kinase domain mutation status in vivo.  相似文献   

10.
Integral role of the EGF receptor in HGF-mediated hepatocyte proliferation.   总被引:16,自引:0,他引:16  
Hepatocyte growth factor (HGF), insulin, and TGF-alpha stimulate DNA synthesis in cultured hepatocytes. Each ligand activates a distinct tyrosine kinase receptor, although receptor cross-talk modulates signaling. In rat hepatocytes, HGF can stimulate TGF-alpha production while TGF-alpha antibodies or antisense oligonucleotides suppress HGF-stimulated DNA synthesis. We report that the epidermal growth factor receptor (EGFR) kinase inhibitor PKI166 blocked both basal and ligand-induced tyrosine phosphorylation of the EGFR (IC(50) = 60 nM), but not of the insulin receptor or c-met. Pharmacologic inhibition of the EGFR kinase abolished the proliferative actions of HGF and EGF, but not insulin, whereas PI-3 kinase inhibition blocked both EGF and insulin actions. We conclude that in cultured hepatocytes (i) PI-3 kinase is required for EGF- and insulin-induced proliferation and (ii) EGFR mediates both the basal rate of DNA synthesis and that induced by EGF and HGF, but not insulin. The mitogenic effect of HGF may be secondary to increased synthesis or processing of EGFR ligands such as TGF-alpha.  相似文献   

11.
The phenotypic properties of the endothelium are subject to modulation by oxidative stress, and the c-Jun N-terminal kinase (JNK) pathway is important in mediating cellular responses to stress, although activation of this pathway in endothelial cells has not been fully characterized. Therefore, we exposed endothelial cells to hydrogen peroxide (H(2)O(2)) and observed rapid activation of JNK within 15 min that involved phosphorylation of JNK and c-Jun and induction of AP-1 DNA binding activity. Inhibition of protein kinase C and phosphoinositide 3-kinase did not effect JNK activation. In contrast, the tyrosine kinase inhibitors, genistein, herbimycin A, and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) significantly attenuated H(2)O(2)-induced JNK activation as did endothelial cell adenoviral transfection with a dominant-negative form of Src, implicating Src as an upstream activator of JNK. Activation of JNK by H(2)O(2) was also inhibited by AG1478 and antisense oligonucleotides directed against the epidermal growth factor receptor (EGFR), implicating the EGFR in this process. Consistent with this observation, H(2)O(2) stimulated EGFR tyrosine phosphorylation and complex formation with Shc-Grb2 that was abolished by PP2, implicating Src in H(2)O(2)-induced EGFR activation. Tyrosine phosphorylation of the EGFR by H(2)O(2) did not involve receptor autophosphorylation at Tyr(1173) as assessed by an autophosphorylation-specific antibody. These data indicate that H(2)O(2)-induced JNK activation in endothelial cells involves the EGFR through an Src-dependent pathway that is distinct from EGFR ligand activation. These data represent one potential pathway for mediating oxidative stress-induced phenotypic changes in the endothelium.  相似文献   

12.
Integrin-mediated cell adhesion regulates a multitude of cellular responses, including proliferation, survival and cross-talk between different cellular signalling pathways. So far, integrins have been mainly shown to convey permissive signals enabling anchorage-dependent receptor tyrosine kinase signalling. Here we show that a collagen-binding integrin alpha(1)beta(1) functions as a negative regulator of epidermal growth factor receptor (EGFR) signalling through the activation of a protein tyrosine phosphatase. The cytoplasmic tail of alpha(1) integrin selectively interacts with a ubiquitously expressed protein tyrosine phosphatase TCPTP (T-cell protein tyrosine phosphatase) and activates it after cell adhesion to collagen. The activation results in reduced EGFR phosphorylation after EGF stimulation. Introduction of the alpha(1) cytoplasmic domain peptide into cells induces phosphatase activation and inhibits EGF-induced cell proliferation and anchorage-independent growth of malignant cells. These data are the first demonstration of the regulation of TCPTP activity in vivo and represent a new molecular paradigm of integrin-mediated negative regulation of receptor tyrosine kinase signalling.  相似文献   

13.
Intracellular polyamine synthesis is regulated by the enzyme ornithine decarboxylase (ODC), and its inhibition by -difluromethylornithine (DFMO), confers resistance to apoptosis. We have previously shown that DFMO leads to the inhibition of de novo polyamine synthesis, which in turn rapidly activates Src, STAT3 and NF-κB via integrin β3 in intestinal epithelial cells. One mechanism to explain these effects involves the activation of upstream growth factor receptors, such as the epidermal growth factor receptor (EGFR). We therefore hypothesized that EGFR phosphorylation regulates the early response to polyamine depletion. DFMO increased EGFR phosphorylation on tyrosine residues 1173 (pY1173) and 845 (pY845) within 5 min. Phosphorylation declined after 10 min and was prevented by the addition of exogenous putrescine to DFMO containing medium. Phosphorylation of EGFR was concomitant with the activation of ERK1/2. Pretreatment with either DFMO or EGF for 1 h protected cells from TNF-/CHX-induced apoptosis. Exogenous addition of polyamines prevented the protective effect of DFMO. In addition, inhibition of integrin β3 activity (with RGDS), Src activity (with PP2), or EGFR kinase activity (with AG1478), increased basal apoptosis and prevented protection conferred by either DFMO or EGF. Polyamine depletion failed to protect B82L fibroblasts lacking the EGFR (PRN) and PRN cells expressing either a kinase dead EGFR (K721A) or an EGFR (Y845F) mutant lacking the Src phosphorylation site. Conversely, expression of WT-EGFR (WT) restored the protective effect of polyamine depletion. Fibronectin activated the EGFR, Src, ERKs and protected cells from apoptosis. Taken together, our data indicate an essential role of EGFR kinase activity in MEK/ERK-mediated protection, which synergizes with integrin β3 leading to Src-mediated protective responses in polyamine depleted cells.  相似文献   

14.
Fibronectin fragments (FN-f), including the 110-kDa fragment that binds the alpha5beta1 integrin, stimulate collagenase-3 (MMP-13) production and cartilage destruction. In the present study, treatment of chondrocytes with the 110-kDa FN-f or an activating antibody to the alpha5beta1 integrin was found to increase tyrosine autophosphorylation (Tyr-402) of the proline-rich tyrosine kinase-2 (PYK2) without significant change in autophosphorylation (Tyr-397) of focal adhesion kinase (FAK). The tyrosine kinase inhibitor tyrphostin A9, shown previously to block a PYK2-dependent pathway, blocked the FN-f-stimulated increase in MMP-13, whereas tyrphostin A25 did not. FN-f-stimulated PYK2 phosphorylation and MMP-13 production was also blocked by reducing intracellular calcium levels. Adenovirally mediated overexpression of wild type but not mutant PYK2 resulted in increased MMP-13 production. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate stimulated PYK2 phosphorylation and MMP-13 production. MMP-13 expression stimulated by either phorbol 12-myristate 13-acetate or FN-f was blocked by PKC inhibitors including the PKCdelta inhibitor rottlerin. Furthermore, PKCdelta translocation from cytosol to membrane was noted within 5 min of stimulation with FN-f. Immortalized human chondrocytes, transiently transfected with MMP-13 promoter-luciferase reporter constructs, showed increased promoter activity after FN-f treatment that was inhibited by co-transfection with either of two dominant negative mutants of PYK2 (Y402F and K457A). No inhibition was seen after cotransfection with wild type PYK2, a dominant negative of FAK (FRNK) or empty vector plasmid. FN-f-stimulated MMP-13 promoter activity was also inhibited by chemical inhibitors of ERK, JNK, and p38 mitogen-activated protein (MAP) kinases or by co-transfection of dominant negative MAP kinase mutant constructs. These studies have identified a novel pathway for the MAP kinase regulation of MMP-13 production which involves FN-f stimulation of the alpha5beta1 integrin and activation of the nonreceptor tyrosine kinase PYK2 by PKC, most likely PKCdelta  相似文献   

15.
FG human pancreatic carcinoma cells adhere to vitronectin using integrin alpha v beta 5 yet are unable to migrate on this ligand whereas they readily migrate on collagen in an alpha 2 beta 1-dependent manner. We report here that epidermal growth factor receptor (EGFR) activation leads to de novo alpha v beta 5-dependent FG cell migration on vitronectin. The EGFR specific tyrosine kinase inhibitor tyrphostin 25 selectively prevents EGFR autophosphorylation thereby preventing the EGF-induced FG cell migration response on vitronectin without affecting constitutive migration on collagen. Protein kinase C (PKC) activation also leads to alpha v beta 5-directed motility on vitronectin; however, this is not blocked by tyrosine kinase inhibitors. In this case, PKC activation appears to be associated with and downstream of EGFR signaling since calphostin C, an inhibitor of PKC, blocks FG cell migration on vitronectin induced by either PKC or EGF. These findings represent the first report implicating a receptor tyrosine kinase in a specific integrin mediated cell motility event independent of adhesion.  相似文献   

16.
In vivo in the prostate gland, basal epithelial cells adhere to laminin 5 (LM5) via alpha3beta1 and alpha6beta4 integrins. When placed in culture primary prostate basal epithelial cells secrete and adhere to their own LM5-rich matrix. Adhesion to LM5 is required for cell survival that is dependent on integrin-mediated, ligand-independent activation of the epidermal growth factor receptor (EGFR) and the cytoplasmic tyrosine kinase Src, but not PI-3K. Integrin-mediated adhesion via alpha3beta1, but not alpha6beta4 integrin, supports cell survival through EGFR by signaling downstream to Erk. PC3 cells, which do not activate EGFR or Erk on LM5-rich matrices, are not dependent on this pathway for survival. PC3 cells are dependent on PI-3K for survival and undergo caspase-dependent death when PI-3K is inhibited. The death induced by inhibition of EGFR or Src in normal primary prostate cells is not mediated through or dependent on caspase activation, but depends on the induction of reactive oxygen species. In addition the presence of an autophagic pathway, maintained by adhesion to matrix through alpha3beta1 and alpha6beta4, prevents the induction of caspases when EGFR or Src is inhibited. Suppression of autophagy is sufficient to induce caspase activation and apoptosis in LM5-adherent primary prostate epithelial cells.  相似文献   

17.
Phenobarbitone (PB) treatment of mice causes a decrease in the growth factor responsiveness of hepatocytes. Here, epidermal growth factor receptor (EGFR) expression and receptor autophosphorylation was determined in hepatocytes isolated from control and PB-treated mice. There was a decrease in the level of EGFR expression in hepatocytes isolated from mice following PB administration when compared to controls. EGF caused an approximate 20-fold increase of the 170 kD phosphotyrosine band in control hepatocytes, which was inhibited by the EGFR specific tyrosine kinase inhibitor 4, 5-dianilinopthalamide. Following PB treatment, the degree of basal receptor phosphorylation (in the absence of EGF) was significantly greater and therefore the fold rise in EGFR phosphorylation in isolated hepatocytes was lower than in controls. However, the overall extent of EGF-induced receptor phosphorylation was not diminished in hepatocytes isolated from PB-treated mice. Therefore the reduction in responsiveness to growth factors seen in hepatocytes ex vivo or the cessation of proliferation observed in vivo following PB administration is unlikely to be attributed to a decrease in ligand binding and subsequent receptor autophosphorylation.  相似文献   

18.
Hyperosmotic exposure of rat hepatocytes triggers epidermal growth factor receptor (EGFR) activation, which results in an activation of the CD95 system and sensitizes the cells toward apoptosis (Reinehr, R., Schliess, F., and Haüssinger, D. (2003) FASEB J. 17, 731-733). The mechanisms underlying the hyperosmotic EGFR activation were studied. Hyperosmotic exposure (405 mosm) resulted in a rapid activation of the Src kinase family members Yes, Fyn, and Lck. Hyperosmotic Yes, but not Fyn activation, was antioxidant-sensitive and was followed by a rapid Yes/EGFR association. PP-2 abolished the hyperosmotic activation of Fyn and Lck but not activation of Yes and EGFR and their association. However, these latter processes were prevented in the presence of SU6656. SU6656 and antioxidants, but not PP-2 and AG1478, also inhibited the hyperosmotic JNK activation. Cyclic AMP had no effect on hyperosmotic Yes and JNK activation but prevented EGFR/Yes association and EGFR activation in an H89-sensitive way. When the hyperosmolarity-induced Yes-EGFR protein complex started to disappear after 30 min, an association between EGFR and CD95 became apparent, which was followed by CD95 tyrosine phosphorylation and activation. SU6656 but not PP-2 also inhibited EGFR/CD95 association, CD95 tyrosine phosphorylation, CD95 membrane trafficking, and death-inducing signaling complex (DISC) formation. EGFR knockdown had no effect on hyperosmotic Yes activation but prevented CD95 tyrosine phosphorylation, membrane targeting, and DISC formation. Hyperosmotic EGFR and CD95 activation was also largely blunted following Yes knockdown. The data suggest that hyperosmotic signaling triggers an oxidative stress-dependent Yes activation, which is followed by JNK and EGFR activation and subsequent activation of the CD95 system. However, the functional relevance of hyperosmolarity-induced Fyn and Lck activation remains to be elucidated.  相似文献   

19.
We have studied epidermal growth factor receptor (EGFR) phosphorylation and localization in the pre-replicative phase of liver regeneration induced by a 70% partial hepatectomy (PH), and how a PH affects EGFR activation and trafficking. When Western blotting was performed on livers after PH with antibodies raised against activated forms of EGFR autophosphorylation sites, no marked increase in EGFR tyrosine phosphorylation was observed. However, events associated with attenuation of EGFR signals were observed. Two hours after PH, we found increased EGFR ubiquitination and internalization, followed by receptor downregulation. Furthermore, EGFR phosphorylation following an injection of EGF was reduced after PH. This reduction correlated with an increased activation of PKC and a distinct augmentation in the phosphorylation of the PKC-regulated T654-site of EGFR. When primary cultured hepatocytes were treated with tetradecanoylphorbol acetate (TPA) to induce T654-phosphorylation of EGFR, we found colocalization of a fraction of EGFR with EEA1, downregulation of EGF-mediated EGFR autophosphorylation, altered ligand-induced intracellular sorting of EGFR, and increased mitogenic signaling through the EGFR-Ras-Raf-ERK pathway. Further, we found that both TPA and a PH enhanced EGF-induced proliferation of hepatocytes. In conclusion, our results suggest that hepatocyte priming involves modulation of EGFR that enhances its ability to mediate growth factor responses without an increase in its receptor tyrosine kinase-activity. This may be a pre-replicative competence event that increases growth factor effects during G1 progression.  相似文献   

20.
In rat liver epithelial cells constitutively expressing transforming growth factor alpha (TGFalpha), c-Met is constitutively phosphorylated in the absence of its ligand, hepatocyte growth factor. We proposed that TGFalpha and the autocrine activation of its receptor, epidermal growth factor receptor (EGFR), leads to phosphorylation and activation of c-Met. We found that there is constitutive c-Met phosphorylation in human hepatoma cell lines and the human epidermoid carcinoma cell line, A431 which express TGFalpha, but not in normal human hepatocytes. Constitutive c-Met phosphorylation in A431, HepG2, AKN-1, and HuH6 cells was inhibited by neutralizing antibodies against TGFalpha and/or EGFR. Exposure to exogenous TGFalpha or EGF increased the phosphorylation of c-Met in the human epidermoid carcinoma cell line, A431. The increase of c-Met phosphorylation by TGFalpha in A431 cells was inhibited by neutralizing antibodies against TGFalpha and/or EGFR and by the EGFR-specific inhibitor tyrphostin AG1478. These results indicate that constitutive c-Met phosphorylation, and the increase of c-Met phosphorylation by TGFalpha or EGF, in tumor cell lines is the result of the activation via EGFR. We found that c-Met in tumor cells co-immunoprecipitates with EGFR regardless of the existence of their ligands in tumor cells, but not in normal human hepatocytes. We conclude that c-Met associates with EGFR in tumor cells, and this association facilitates the phosphorylation of c-Met in the absence of hepatocyte growth factor. This cross-talk between c-Met and EGFR may have significant implications for altered growth control in tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号