首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Synthetic polymer-bound hemin (iron(III) protoporphyrin IX) derivatives were effectively reduced by ferredoxin and ferredoxin-NADP reductase system. The resultant polymer-bound heme (iron(II) protoporphyrin IX) derivatives formed oxygen adducts with a lifetime of ca. 1 hr in aqueous solution at -30 degrees C. The reduction rate is discussed in terms of the structure of the hemin derivatives.  相似文献   

3.
Regulation of transferrin receptors in human hematopoietic cell lines   总被引:6,自引:0,他引:6  
Cells grown in the presence of ferric ammonium citrate or hemin exhibited a concentration and time-dependent decrease in 125I-transferrin (Trf) binding. In contrast, cells grown in the presence of protoporphyrin IX or picolinic acid (an iron chelator) exhibited a marked increase in Trf binding. The decrease or increase in binding activity observed under these different conditions of culture reflected, respectively, a reduction or increase in receptor number rather than an alteration in ligand receptor affinity. Growth of the cells in the presence of saturating concentrations of apotransferrin only induced a slight reduction in receptor number. Investigation of the Trf receptors' turnover and biosynthesis clearly showed that iron and hemin decreased the synthesis of Trf receptors without any modification of the receptor turnover; in contrast, protoporphyrin IX and picolinic acid markedly increased the synthesis of Trf receptors. Our results suggest that hemin, iron, and protoporphyrin IX may represent the main molecules involved in the regulation of Trf receptors.  相似文献   

4.
Shepherd M  Heath MD  Poole RK 《Biochemistry》2007,46(17):5030-5037
NikA is a periplasmic binding protein involved in nickel uptake in Escherichia coli. NikA was identified as a heme-binding protein in the periplasm of anaerobically grown cells overexpressing CydDC, an ABC transporter that exports reductant to the periplasm. CydDC-overexpressing cells accumulate a heme biosynthesis-derived pigment, P-574. For further biochemical and spectroscopic analysis, unliganded NikA was overexpressed and purified. NikA was found to comigrate with both hemin and protoporphyrin IX during gel filtration. Furthermore, tryptophan fluorescence quenching titrations demonstrated that both hemin and protoporphyrin IX bind to NikA with similar affinity. The binding affinity of NikA for these pigments (Kd approximately 0.5 microM) was unaltered in the presence and absence of saturating concentrations of nickel, suggesting that these tetrapyrroles bind to NikA in a manner independent of nickel. To test the hypothesis that NikA is required for periplasmic heme protein assembly, the effects of a nikA mutation (nikA::Tn5, Km(R) insertion) on accumulation of P-574 by CydDC-overexpressing cells was assessed. This mutation significantly lowered P-574 levels, implying that NikA may be involved in P-574 production. Thus, in the reducing environment of the periplasm, NikA may serve as a heme chaperone as well as a periplasmic nickel-binding protein. The docking of heme onto NikA was modeled using the published crystal structure; many of the predicted complexes exhibit a heme-binding cleft remote from the nickel-binding site, which is consistent with the independent binding of nickel and heme. This work has implications for the incorporation of heme into b- and c-type cytochromes.  相似文献   

5.
To gain insight into the chloroplast-to-nucleus signaling role of tetrapyrroles, Chlamydomonas reinhardtii mutants in the Mg-chelatase that catalyzes the insertion of magnesium into protoporphyrin IX were isolated and characterized. The four mutants lack chlorophyll and show reduced levels of Mg-tetrapyrroles but increased levels of soluble heme. In the mutants, light induction of HSP70A was preserved, although Mg-protoporphyrin IX has been implicated in this induction. In wild-type cells, a shift from dark to light resulted in a transient reduction in heme levels, while the levels of Mg-protoporphyrin IX, its methyl ester, and protoporphyrin IX increased. Hemin feeding to cultures in the dark activated HSP70A. This induction was mediated by the same plastid response element (PRE) in the HSP70A promoter that has been shown to mediate induction by Mg-protoporphyrin IX and light. Other nuclear genes that harbor a PRE in their promoters also were inducible by hemin feeding. Extended incubation with hemin abrogated the competence to induce HSP70A by light or Mg-protoporphyrin IX, indicating that these signals converge on the same pathway. We propose that Mg-protoporphyrin IX and heme may serve as plastid signals that regulate the expression of nuclear genes.  相似文献   

6.
Heme (Fe-protoporphyrin IX), an endogenous porphyrin derivative, is an essential molecule in living aerobic organisms and plays a role in a variety of physiological processes such as oxygen transport, respiration, and signal transduction. For the biosynthesis of heme or the mitochondrial heme proteins, heme or its biosynthetic precursor porphyrin must be transported into mitochondria from cytosol. The mechanism of porphyrin accumulation in the mitochondrial inner membrane is unclear. In the present study, we analyzed the mechanism of mitochondrial translocation of porphyrin derivatives. We showed that palladium meso-tetra(4-carboxyphenyl)porphyrin (PdTCPP), a phosphorescent porphyrin derivative, accumulated in the mitochondria of several cell lines. Using affinity latex beads, we showed that 2-oxoglutarate carrier (OGC), the mitochondrial transporter of 2-oxoglutarate, bound to PdTCPP, and in vitro PdTCPP inhibited 2-oxoglutarate uptake into mitochondria in a competitive manner (Ki = 15 microM). Interestingly, all types of porphyrin derivatives examined in this study competitively inhibited 2-oxoglutarate uptake into mitochondria, including protoporphyrin IX, coproporphyrin III, and hemin. Furthermore, mitochondrial accumulation of porphyrins was inhibited by 2-oxoglutarate or OGC inhibitor. These results suggested that porphyrin accumulation in mitochondria is mediated by OGC and that porphyrins are able to competitively inhibit 2-oxoglutarate uptake into mitochondria. This is the first report of a putative mechanism for accumulation of porphyrins in the mitochondrial inner membrane.  相似文献   

7.
The effect of adding hemin to anaerobically grown cells of a strain of Staphylococcus epidermidis, which was heme-deficient due to anaerobic growth, has been examined. Cells grown anaerobically in media containing hemin exhibited a marked increase in several oxidative activities as compared with cells grown anaerobically without hemin. The respiratory activity of whole cells and a cyamide-sensitive reduced nicotinamide adenine dinucleotide oxidase activity of cell-free extracts were increased fourfold. The content of enzymatically reducible pigments which exhibit difference spectra similar to cytochromes b(1) and o was also markedly increased. These pigments are mostly sedimented at 100,000 x g (1 hr). Hemin also caused a marked increase in respiratory activity when added directly to the anaerobic culture after the period of growth, but did not cause a similar increase in respiration when added to washed, resting-cell suspensions. Under the latter conditions, heme pigments were formed which exhibited difference spectra similar to, but not identical with, the spectra of pigments found in anaerobic cells grown in the presence of hemin. When resting suspensions of cells grown anaerobically without hemin were exposed to air, a rapid fourfold increase in respiratory activity and a limited increase in cytochrome-like pigments occurred. The presence of the heme precursor Delta-aminolevulinic acid during this aeration resulted in a rapid and marked increase in heme pigments, but only a slight stimulation of respiratory activity. The possible implications of these results for the roles which heme and oxygen play in the development of the respiratory system of this organism are discussed.  相似文献   

8.
Beale SI  Chen NC 《Plant physiology》1983,71(2):263-268
The ability of N-methyl mesoporphyrin IX (NMMP) to block heme synthesis by specifically inhibiting enzymic iron insertion into protoporphyrin IX was exploited to test whether heme is a precursor of the bilin chromophore of phycocyanin (PC). A strain of the unicellular rhodophyte Cyanidium caldarium which forms normal amounts of both chlorophyll (Chl) and PC in the dark was employed to avoid phototoxic effects of exogenous porphyrins. Relative Chl and PC content were assayed spectrophotometrically on whole cell suspensions.

When cells were grown in the dark on a glucose-based heterotrophic medium at 42°C, neither division rate nor Chl synthesis was affected by NMMP up to 3.0 micromolar and for as long as 72 hours. NMMP had a dose-dependent inhibitory effect on PC synthesis. PC to Chl absorbance ratios, relative to control cell values, were 100%, 89%, 86%, and 50% in cells grown for 48 hours with 0.3, 1.0, 3.0, and 10.0 micromolar NMMP, respectively. NMMP also caused the accumulation of intracellular protoporphyrin.

The ability of NMMP to cause intracellular accumulation of protoporphyrin and to block PC synthesis specifically while allowing normal Chl formation is consistent with its action as a specific inhibitor of enzymic iron chelation, and supports the role of heme as a precursor to the phycobilins.

  相似文献   

9.
Hemin (iron protoporphyrin IX) is a necessary component of many proteins, functioning either as a cofactor or an intracellular messenger. Hemoproteins have diverse functions, such as transportation of gases, gas detection, chemical catalysis and electron transfer. Stanniocalcin 1 (STC1) is a protein involved in respiratory responses of the cell but whose mechanism of action is still undetermined. We examined the ability of STC1 to bind hemin in both its reduced and oxidized states and located Cys114 as the axial ligand of the central iron atom of hemin. The amino acid sequence differs from the established (Cys–Pro) heme regulatory motif (HRM) and therefore presents a novel heme binding motif (Cys–Ser). A STC1 peptide containing the heme binding sequence was able to inhibit both spontaneous and H2O2 induced decay of hemin. Binding of hemin does not affect the mitochondrial localization of STC1.  相似文献   

10.
Iron metabolism in K562 erythroleukemic cells   总被引:7,自引:0,他引:7  
Iron delivery to K562 cells is enhanced by desferrioxamine through induction of transferrin receptors. Experiments were performed to further characterize this event with respect to iron metabolism and heme synthesis. In control cells, up to 85% of the iron taken up from iron-transferrin was incorporated into ferritin, 7% into heme, and the remainder into compartments not yet identified. In cells grown with desferrioxamine, net accumulation of intracellular desferrioxamine (14-fold) was observed and iron incorporation into ferritin and heme was inhibited by 86% and 75%, respectively. In contrast, complete inhibition of heme synthesis in cells grown with succinylacetone had no effect on transferrin binding or iron uptake. Exogenous hemin (30 microM) inhibited transferrin binding and iron uptake by 70% and heme synthesis by 90%. These effects were already evident after 2 h. Thus, although heme production could be reduced by desferrioxamine, succinylacetone, and hemin, cell iron uptake was enhanced only by the intracellular iron chelator. The effects of exogenous heme are probably unphysiologic and the greater inhibition of iron flow into heme can be explained by effects on early steps of heme synthesis. We conclude that in this cell model a chelatable intracellular iron pool rather than heme synthesis mediates regulation of iron uptake.  相似文献   

11.
12.
In Lemna pausicostata Hegelm. 6746, light is required for sufficient acifluorfenmethyl (AFM) stimulation of protoporphyrin IX (Proto IX) accumulation to cause significant herbicidal action. In darkness, AFM causes Proto IX levels to increase for about 2 h, after which Proto IX content is stable at levels significantly lower than those accumulated in light. In darkness, sucrose cannot increase levels of AFM-induced Proto IX. However, addition of δ-aminolevulinic acid (ALA) increases Proto IX levels in AFM-treated plants in darkness, demonstrating that the herbicide blocks the porphyrin pathway in darkness as it does in the light. Thus, Proto IX accumulation in darkness appears to be limited by ALA availability. This is supported by the finding that dioxoheptanoic acid caused more ALA to accumulate in light than in darkness. Heme is a feedback inhibitor of ALA synthesis, and heme synthesis is inhibited by AFM. However, total extractable heme levels were reduced by AFM by about the same amount in both light and darkness. Exogenously supplied hemin reduced AFM-caused Proto IX accumulation and herbicidal damage in the light and also reduced Proto IX accumulation caused by AFM or AFM plus ALA in darkness. AFM-stimulated Proto IX accumulation was inversely proportional to the log of the photon flux density between 5 and 500 μmol in m−2 s−1. Reduced effects of higher photon fluxes on AFM-stimulated Proto IX accumulation are probably due to both increased photobleaching of Proto IX and reduced porphyrin synthesis because of herbicidal damage. AFM-stimulated Proto IX accumulation in darkness could not be demonstrated to be under phytochrome control, but it appeared to be under the negative influence of protochlorophyllide levels.  相似文献   

13.
Mouse Friend virus-transformed erythroleukemia cells in culture undergo erythroid differentiation when treated with a variety of compounds including iron protoporphyrin IX, i.e. hemin. Exogenous hemin is not only incorporated into hemoglobin in these cells but also stimulates heme biosynthesis (Granick, J. L., and Sassa, S. (1978) J. Biol. Chem. 253, 5402-5406). In this study, we examined whether metalloporphyrins other than hemin can also induce differentiation, and if so, whether they can also be incorporated into hemoglobin. Among eight metalloporphyrins examined in culture of these cells, i.e. Co, Mn, Cu, Mg, Ni, Zn, Sn, and Cd protoporphyrin IX, only Co protoporphyrin (10(-4) M) was found to significantly increase the biosynthesis of heme and hemoglobin. In contrast to hemin-mediated induction of erythroid differentiation, Co protoporphyrin was not incorporated into hemoglobin in Friend cells. These data indicate that Co protoporphyrin induces the formation of heme and hemoglobin in Friend cells and that these increases are due to the enhancement of heme biosynthetic activity.  相似文献   

14.
Heme oxygenase-1 can play a protective role against cellular stress. In colon cancer cells, these effects would be relevant to oncogenesis and resistance to chemotherapy. The aim of the study was to examine the effects of heme oxygenase-1 induction on cell survival in a human colon cancer cell line, Caco-2. Serum deprivation induced apoptosis, reduced Akt and p38 phosphorylation, and increased p21(Cip/WAF1) levels. Heme oxygenase-1 induction by treatment with cobalt protoporphyrin IX resulted in resistance to apoptosis, activation of Akt, reduction in p21(Cip/WAF1) levels and modification of bcl2/bax ratio towards survival. Indomethacin reduced apoptosis but in contrast to heme oxygenase-1, arrested cells in G0/G1. Apoptosis was also inhibited by the heme oxygenase metabolites bilirubin and biliverdin but the CO donor tricarbonyldichlororuthenium(II) dimer did not exert significant effects. Protection against apoptosis in cells treated with cobalt protoporphyrin IX was reverted by incubation with heme oxygenase-1 small interfering RNA. This study shows an antiapoptotic effect of heme oxygenase-1 in colon cancer cells which could be mediated by the formation of bilirubin and biliverdin. Our results support an antiapoptotic role for HO-1 in these cells and provide a mechanism by which overexpression of HO-1 may promote tumor resistance to stress in conditions of limited nutrient supply. We have extended these observations by demonstrating that these effects are independent of p38 but are mediated via Akt pathway.  相似文献   

15.
Several mutants of Escherichia coli K-12 defective in aerobic metabolism were isolated. One such mutant was found to be deficient in cytochromes, heme, and catalase. Aerobically grown cells did not consume oxygen and could grow only on fermentable carbon sources. Supplementation of the growth medium with delta-aminolevulonic acid, protoporphyrin IX, or hemin did not restore aerobic metabolism. The lack of heme and catalase in mutant cells grown on glucose was not due to catabolite repression, since the addition of exogenous cyclic AMP did not restore the normal phenotype. When grown aerobically on complex medium containing glucose, the mutant produced lactic acid as the principal fermentation product. This pleotropic mutation was attributed to an inability of the cells to synthesize heme, and preliminary data mapped the mutation to between 8 and 13 min on the E. coli genome.  相似文献   

16.
17.
A Tn5-induced mutant of Bradyrhizobium japonicum, strain LORBF1, was isolated on the basis of the formation of fluorescent colonies, and stable derivatives were constructed in backgrounds of strains LO and I110. The stable mutant strains LOek4 and I110ek4 were strictly dependent upon the addition of exogenous hemin for growth in liquid culture and formed fluorescent colonies. The fluorescent compound was identified as protoporphyrin IX, the immediate precursor of protoheme. Cell extracts of strains LOek4 and I110ek4 were deficient in ferrochelatase activity, the enzyme which catalyzes the incorporation of ferrous iron into protoporphyrin IX to produce protoheme. Mutant strain I110ek4 could take up 55Fe from the growth medium, but, unlike the parent strain, no significant incorporation of radiolabel into heme was found. This observation shows that heme was not synthesized in mutant strain I110ek4 and that the heme found in those cells was derived from exogenous hemin in the growth medium. The putative protein encoded by the gene disrupted in strain LORBF1 and its derivatives was homologous to ferrochelatases from eukaryotic organisms. This homology, along with the described mutant phenotype, provides strong evidence that the disrupted gene is hemH, that which encodes ferrochelatase. Mutant strain I110ek4 incited nodules on soybean that did not fix nitrogen, contained few viable bacteria, and did not express leghemoglobin heme or apoprotein. The data show that B. japonicum ferrochelatase is essential for normal nodule development.  相似文献   

18.
19.
Bilirubin is a potent antioxidant generated intracellularly during the degradation of heme by the enzyme heme oxygenase. The purpose of this study was to determine the role of increased cardiac bilirubin in protection against postischemic myocardial dysfunction. Rat hearts were isolated and perfused according to the Langendorff technique to evaluate the recovery of myocardial function after 30 min of global ischemia and 60 min of reperfusion. We found that upregulation of the inducible isoform of heme oxygenase (HO-1) by treatment of animals with hemin 24 h before ischemia ameliorated myocardial function and reduced infarct size (tetrazolium staining) on reperfusion of isolated hearts. Tin protoporphyrin IX, an inhibitor of heme oxygenase activity, completely abolished the improved postischemic myocardial performance observed after hemin-mediated HO-1 induction. Likewise, cardiac tissue injury was exacerbated by treatment with tin protoporphyrin IX. Increased cardiac HO-1 expression and heme oxygenase activity were associated with enhanced tissue bilirubin content and an increased rate of bilirubin release into the perfusion buffer. Furthermore, exogenously administered bilirubin at concentrations as low as 100 nanomolar significantly restored myocardial function and minimized both infarct size and mitochondrial damage on reperfusion. Our data provide strong evidence for a primary role of HO-1-derived bilirubin in cardioprotection against reperfusion injury.  相似文献   

20.
The iron chelator 2,2'-dipyridyl (0.2 mM) more than fourfold increased the concentration of protoporphyrin IX and also of its zinc-containing complex in mitochondria of the yeast Saccharomyces cerevisiae. Protoporphyrin IX and a chlorine derivative of protoporphyrin IX which fluoresces at 670-675 nm were found in isolated plasma membranes of the yeast grown in the presence of 0.2 mM 2,2'-dipyridyl. The accumulation of endogenous porphyrins resulted in intensification of lipid photoperoxidation in mitochondria and plasma membranes and in a dramatically increased sensitivity of the cells to visible light (400-600 nm). The relative contribution of photodestruction of subcellular structures to photoinduced cell inactivation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号