首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Two Cu(II) complexes with cyanoguanidine (cnge) and o-phenanthroline, [Cu(o-phen)(2)(cnge)](NO(3))(2).2H(2)O (1) and [Cu(o-phen)(cnge)(H(2)O)(NO(3))(2)] (2), have been synthesized using different experimental techniques and characterized by elemental analyses, FTIR, diffuse and UV-vis spectra and EPR and magnetic moment measurements techniques. The crystal structures of both complexes were solved by X-ray diffraction methods. Complex (1) crystallizes in the monoclinic space group C2/c with a=12.621(5), b=31.968(3), c=15.39(1)A, beta=111.68(4) degrees, and Z=8 and complex (2) in the monoclinic space group P2(1)/n with a=10.245(1), b=13.923(2), c=12.391(2)A, beta=98.07(1) degrees, and Z=4. The environments of the copper(II) center are trigonal bipyramidal (TBP) for [Cu(o-phen)(2)(cnge)](2+) and an elongated octahedron for [Cu(o-phen)(cnge)(H(2)O)(NO(3))(2)]. Solution studies have been performed to determine the species distribution. The superoxide dismutase (SOD) activities of both complexes have also been tested in order to determine if these compounds mimic the enzymatic action of the enzyme SOD that protects cells against peroxide radicals.  相似文献   

2.
Two pseudopolymorphs, solvates, of [Cu(2)(II)(niflumate)(4)(H(2)O)(2)] of unknown structure were obtained following solution of [Cu(2)(II)(niflumate)(4)(H(2)O)(2)] in N,N-dimethylacetamide (DMA) or N,N-dimethylformamide (DMF). Low-temperature crystal structures obtained for these solvates revealed that they were ternary aqua DMA and DMF solvates: [Cu(2)(II)(niflumate)(4)(H(2)O)(2)].4DMA and [Cu(2)(II)(niflumate)(4)(H(2)O)(2)].4DMF. Intermolecular hydrogen bonding interactions account for the formation of these stable DMA and DMF solvates. These pseudopolymorphs contain a centrosymmetric binuclear center with Cu-Cu bond distances ranging from 2.6439(7) to 2.6452(9) A; the coordination sphere of Cu(II) is characterized by one long Cu-O (water) bond length of 2.128(3)-2.135(3) A and four short Cu-O (carboxylate) bonds of 1.949(3)-1.977(3) A. Crystal parameters for the DMA pseudopolymorph: a=10.372(1), b=19.625(2), c=17.967(2) A, beta=97.40(1) degrees , V=3626.8(6) A(3); monoclinic system; space group: P2(1)/a and for the DMF pseudopolymorph: a=10.125(2), b=18.647(3), c=19.616(4) A, alpha=74.38(2)(o), beta=88.18(2)(o), gamma=79.28(2)(o), V=3504(1) A(3); triclinic system; space group: P1. EPR spectra of these solids are identical and show strong antiferromagnetic coupling between the copper atoms, similar to the spectrum obtained for [Cu(2)(II)(niflumate)(4)(DMSO)(2)]. The [Cu(2)(II)(niflumate)(4)(H(2)O)(2)], [Cu(2)(II)(niflumate)(4)(H(2)O)(2)].4DMA, [Cu(2)(II)(niflumate)(4)(H(2)O)(2)].4DMF, [Cu(2)(II)(niflumate)(4)(DMF)(2)], and[Cu(2)(II)(niflumate)(4)(DMSO)(2)] evidenced protection against maximal electroshock-induced seizures and Psychomotor seizures at various times after treatment, consistent with the well known antiinflammatory activities of Cu chelates, but failed to protect against Metrazol-induced seizures while evidencing some Rotorod Toxicity consistent with a mechanism of action involving sedative activity.  相似文献   

3.
The purpose of this research was to characterize by X-ray crystallography the ternary dimethylformamide (DMF) Cu(II) complex of acetylsalicylic acid (aspirin), in an effort to compare the structure-activity relationships for the anticonvulsant activity of this and other Cu(II)aspirinate chelates. The ternary DMF Cu(II) complex of aspirin was synthesized and crystals grown from a DMF solution were characterized by single crystal X-ray diffraction. This crystalline material was analyzed for anticonvulsant activity in the Maximal Electroshock (MES) Grand Mal and subcutaneous Metrazol (scMET) Petit Mal models of seizure used to detect anticonvulsant activity. The ternary DMF complex was found to be a monomolecular binuclear complex, tetrakis-mu-(acetylsalicylato)bis(dimethylformamido)dicopper(II) [Cu(II)(2)(aspirinate)(4)(DMF)(2)] with the following parameters: monoclinic, space group P2(1)/n, a=12.259 (1), b=10.228 (1), c=16.987 (1) A, beta=92.07 (1) degrees; V=2128.5 (3) A(3); Z=2. The structure was determined at 180 K from 2903 unique reflections (I>1sigma(I)) to the final values of R=0.030 and wR=0.033 using F. This binuclear complex contains four acetylsalicylate bridging ligands which are related to each other in a two by two symmetry center. The four nearest O atoms around each Cu atom form a closely square planar arrangement with the square pyramidal coordination completed by the dimethylformamide oxygen atom occupying an apical position at a distance of 2.154 (1) A. Each Cu atom is displaced towards the DMF ligand by 0.187 A from the plane of the four O atoms. Electron paramagnetic resonance (EPR) spectra of [Cu(II)(2)(aspirinate)(4)(DMF)(2)] crystals show a strong antiferromagnetic coupling of the copper atoms, similar to that observed with other binuclear copper(II)salicylate compounds. Studies used to detect anticonvulsant activity revealed that [Cu(II)(2)(aspirinate)(4)(DMF)(2)] was an effective anticonvulsant in the MES model of seizure but ineffective against scMET-induced seizures. The monomolecular ternary binuclear [Cu(II)(2)(aspirinate)(4)(DMF)(2)] complex is more effective in inhibiting MES-induced seizures than other binuclear or mononuclear Cu(II) chelates of aspirin including: binuclear polymeric [Cu(II)(2)(aspirinate)(4)], [Cu(II)(2)(aspirinate)(4)(H(2)O)], which is anticipated to be less polymeric, and monomolecular ternary [Cu(II)(2)(aspirinate)(4)(DMSO)(2)] and [Cu(II)(aspirinate)(2)(Pyr)(2)]. These and other chelates appear to be more effective in the scMET model of seizure than [Cu(II)(2)(aspirinate)(4)(DMF)(2)]. These structure-activity relationships support the potential efficacy of Cu chelates of aspirin in treating epilepsies.  相似文献   

4.
A series of mononuclear copper(II) complexes having a 1:1 molar ratio of copper and the planar heterocyclic base like 1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) are prepared from a reaction of copper(II) nitrate.trihydrate and the base (L) in ethanol or aqueous ethanol at different temperatures. The complexes [Cu(dpq)(NO(3))(2)] (2), [Cu(dpq)(NO(3))(H(2)O)(2)](NO(3)) (3), [Cu(dpq)(NO(3))(2)(H(2)O)(2)].2H(2)O (4.2H(2)O) and [Cu(dppz)(NO(3))(2)(H(2)O)].H(2)O (5.H(2)O) have been characterized by X-ray crystallography. The crystal structures show the presence of the heterocyclic base in the basal plane. The coordination geometries of the copper(II) centers are axially elongated square-pyramidal (4+1) in 2, 3 and 5, and octahedral (4+2) in 4. The nitrate anion in the coordination sphere displays unidentate and bidentate chelating bonding modes. The axial ligand is either H(2)O or NO(3) in these structures giving a Cu-L(ax) distance of approximately 2.4 A. The one-electron paramagnetic complexes (mu approximately 1.8 mu(B)) exhibit axial EPR spectra in DMF glass at 77 K giving g(parallel)>g( perpendicular ) with an A(parallel) value of approximately 170G indicating a [d(x)2(-y)2](1) ground state. The complexes are redox active and display a quasireversible cyclic voltammetric response for the Cu(II)/Cu(I) couple near 0.0 V vs. SCE giving an order of the E(1/2) values as 5(dppz)>2-4 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). The complexes bind to calf thymus DNA giving an order 5 (dppz)>2 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). An effect of the extended planar ring in dpq and dppz is observed in the DNA binding. The complexes show nuclease activity with pUC19 supercoiled DNA in DMF/Tris-HCl buffer containing NaCl in presence of mercaptopropanoic acid as a reducing agent. The extent of cleavage follows the order: [Cu(phen)(2)(H(2)O)](ClO(4))(2)>5>2 approximately 3 approximately 4>1. The bis-phen complex is a better cleaver of SC DNA than 1-5 having mono-heterocyclic base. Mechanistic investigations using distamycin reveal minor groove biding for the phen, dpq complexes, and a major groove binding for the dppz complex 5. The cleavage reactions are found to be inhibited in the presence of hydroxyl radical scavenger DMSO and the reactions are proposed to proceed via sugar hydrogen abstraction pathway. The ancillary ligand is found to have less effect in DNA binding but are of importance in DNA cleavage reactions.  相似文献   

5.
The equilibrium and solution structural properties of the iron(III) and copper(II) complexes of an asymmetric salen-like ligand (N,N'-bis(2-hydroxybenzyl)-2,3-diamino-propionic acid, H(3)bhbdpa) bearing a pendant carboxylate group were characterized in aqueous solution by potentiometric, pH-dependent electron paramagnetic resonance (EPR) and UV-Vis (UV-Visible) measurements. In the equimolar systems the pentadentate ligand forms very stable, differently protonated mononuclear complexes with both metal ions. In the presence of iron(III) {NH, PhO(-), COO(-)}, {2NH, 2PhO(-), COO(-)} and {2NH, 2PhO(-), COO(-), OH(-)} coordinated complexes are dominant. The EPR titrations reflected the presence of microscopic complex formation pathways, leading to the formation of binding isomers in case of Cu(H(2)bhbdpa)(+), Cu(Hbhbdpa) and Cu(bhbdpa)(-). The {2NH, 2PhO(-)+COO(-)/H(2)O} coordinated Cu(bhbdpa) is the only species between pH 6-11. At twofold excess of metal ion dinuclear complexes were detected with both iron(III) and copper(II). In presence of iron(III) a mu-carboxylato-mu-hydroxo-bridged dinuclear complex (Fe(2)(bhbdpa)(OH)(3)) is formed from Fe(H(2)bhbdpa)(2+) through overlapping proton release processes, providing one of the rare examples for the stabilization of an endogenous carboxylate bridged diiron core in aqueous solution. The complex Cu(2)(bhbdpa)(+) detected in the presence of copper(II) is a paramagnetic (S=1) species with relatively weakly coupled metal ions.  相似文献   

6.
The water soluble polymer-copper(II) complex samples, [Cu(bpy)(2)(BPEI)]Cl(2).4H(2)O (bpy=2,2'-bipyridine, BPEI=branched polyethyleneimine), with varying degrees of copper(II) chelates content in the polymer chain, were prepared by ligand substitution method in water-ethanol medium and characterized by Infra-red, UV-visible, EPR spectral and elemental analysis methods. The interaction of these polymer-copper(II)-bipyridyl complex samples with calf thymus DNA has been explored by using electronic absorption spectroscopy, emission spectroscopy and gel electrophoresis techniques. The observed changes in the physico-chemical features of the polymer-copper(II) complex on binding to DNA suggest that the complex binds to DNA with electrostatic interaction mode. A sample of polymer-copper(II) complex was tested for its antibacterial and antifungal activity and it was found to have good antibacterial and antifungal activities.  相似文献   

7.
A new octanuclear copper(II) complex has been synthesized and structurally characterized by X-ray crystallography: [Cu(8)(HL)(4)(OH)(4)(H(2)O)(2)(ClO(4))(2)].(ClO(4))(2).2H(2)O (1) (H(3)L=2,6-bis(hydroxyethyliminoethyl)-4-methyl phenol). The complex is formed by the linkage of two terminal bimetallic cationic units and a tetranuclear mu(3)-hydroxo bridged dicubane core by a very short intramolecular hydrogen bond (O-H...O, 1.48(3)A and the angle 175 degrees). The coordination sphere of the terminal copper atoms is square pyramidal, the apical positions being occupied by water and a perchlorate ion. Complex 1 self-assembles to form a new type of water-perchlorate helical network [(H(2)O)(2)(ClO(4))](infinity) involving oxygen atoms of coordinated perchlorate ion and the two lattice water molecules through hydrogen-bonding interaction. The variable temperature-dependent susceptibility measurement (2-300K) of 1 reveals a strong antiferromagnetic coupling, J(1)=-220cm(-1) and J(2)=-98cm(-1) (J(1) and J(2) representing the exchange constant within [Cu(2+)](4) and [Cu(2+)](2) units, respectively). The complex binds to double-stranded supercoiled plasmid DNA giving a K(app) value of 1.2x10(7)M(-1) and displays efficient oxidative cleavage of supercoiled DNA in the presence of H(2)O(2) following a hydroxyl radical pathway.  相似文献   

8.
The complexes [Cu(II)(phen)(L-Pro)(H2O)]+ ClO4(-) (1; phen = 1,10-phenanthroline) and [Cu(II)(bipy)(L-Pro)(H2O)]+ ClO4(-) (2; bipy = 2,2'-bipyridine) were synthesized and characterized by IR, magnetic susceptibility, UV/VIS, EPR, ESI-MS, elemental analysis, and theoretical calculations. The metal center was found in a square-pyramidal geometry. UV/VIS, thermal-denaturation, and fluorescence-spectroscopic studies were conducted to assess the interaction of the complexes with CT-DNA. An intercalative mode of binding was found, with intrinsic binding constants (Kb) of 3.86x10(3) and 4.6x10(3) M(-1) and Stern-Volmer quenching constants (K) of 0.15 and 0.11 for 1 and 2, respectively. Interestingly, none of the Cu(II) complexes was able to cleave pUC-19 DNA, which is attributed to the absence of a Pro amide H-atom and inhibition of the formation of an OH radical from the axially coordinated H2O molecule.  相似文献   

9.
Cu(BZA)(2)(EtOH)(0.5) (1) was generated by the reaction of copper(II) hydroxide with benzoic acid (BZAH). [Cu(TBZH)(2)(BZA)](BZA).0.5TBZH.H(2)O (2) and [Cu(2-PyBZIMH)(2-PyBZIM)(BZA)].1.66EtOH (3) were obtained when 1 reacted with Thiabendazole (TBZH) and 2-(2-pyridyl)benzimidazole (2-PyBZIMH), respectively. [Cu(BZA)(2)(phen)(H(2)O)] (4) was isolated from the reaction of benzoic acid and 1,10-phenanthroline (phen) with copper(II)acetate dihydrate. Molecular structures of 2, 3 and 4 were determined crystallographically. 2 and 3 are hydrogen bonded dimers and trimers, respectively. The copper centres in complexes 2 and 3 are bis-chelate derivatives that have N(4)O ligation and their geometry is very similar being approximately square-pyramidal. However whereas in complex 2 both TBZH ligands are neutral in 3 one of the 2-PyBZIMH chelators is deprotonated on each copper. The structural results for 4 represent a re-examination of this crystallographically known compound for which no hydrogen atom coordinates have been previously reported. It crystallises as a hydrogen bonded dimmer and is a mono-chelate of phen with each copper centre possessing N(2)O(3) ligation and square pyramidal geometry. The catalase and superoxide dismutase (SOD) activities of the four complexes along with those of the known phenanthroline complexes [Cu(mal)(phen)(2)] and [Cu(phendione)(3)](ClO(4))(2) (malH(2)=malonic acid and phendione=1,10-phenanthroline-5,6-dione) were investigated. Complexes 1-4, the metal free ligands and a simple copper(II) salt were assessed for their cancer chemotherapeutic potential against the hepatocellular carcinoma (Hep-G(2)) and kidney adenocarcinoma (A-498) cell lines. TBZH, 2-PyBZIMH and benzoic acid when uncoordinated to a metal centre offer poor chemotherapeutic potential. copper(II) benzoate is significantly more active than the free acid. The bis-chelate derivatives [Cu(TBZH)(2)(BZA)](BZA).0.5TBZH.H(2)O (2) and [Cu(2-PyBZIMH)(2-PyBZIM)(BZA)].1.66EtOH (3) elicit a significant cytotoxic response to the cancer cell lines tested. Replacing TBZH and 2-PyBZIMH with phen to give [Cu(BZA)(2)(phen)(H(2)O)] (4) does not significantly increase the anti-cancer activity.  相似文献   

10.
New Cu(II), Ni(II), Co(II), Fe(II), and Mn(II) metal complexes of buparvaquone [3-trans(4-tert.-butylcyclohexyl)methyl-2-hydroxy-1,4-naphthoquione] (L1H) have been synthesized and characterized using IR, electron paramagnetic resonance (EPR) spectroscopy, microanalytical methods and single crystal X-ray diffraction methods. The single crystal structures were determined for ligand L1H [space group P-1 with a=6.2072(14) A, b=10.379 (2) A, c=13.840 (3) A, V=878.7(3) A(3), Z=2, D(calcd.)=1.234 mg/m(3)] and copper complex [Cu(L1)(2)(C(2)H(5)OH)(2)] C1 [space group I2/a with a=17.149(14) A, b=9.4492(8) A, c=26.946(3) A, V=4335.3(7)A(3), Z=4, D(calcd.)=1.233 mg/m(3)]. All the metal complexes along with the parent ligand have been studied for their electrochemical properties using cyclic voltammetric techniques. The compounds were tested for their in vitro antimalarial activity against Plasmodium falciparum strains. A correlation between the antimalarial activity and the redox property of these complexes is presented. The copper complex C1 exhibits significantly higher growth inhibitory activity both in vitro and in vivo than the parent ligand.  相似文献   

11.
DNA-binding properties of novel binulear copper(II) complex [Cu(2)(Dmbiim)(4)(H(2)O)(2)](ClO(4))(4).6H(2)O, where Dmbiim = 1,1'-Dimethyl-2,2'-biimidazole are investigated using electronic absorption spectroscopy, fluorescence spectroscopy, viscosity measurement and voltammetry. The results show that the copper(II) complex interacts with DNA through minor groove binding. The interaction between the complex and DNA has also been investigated by gel electrophoresis, interestingly, we found that the copper(II) complex can cleave circular plasmid pBR322 DNA efficiently in the presence of AH(2) (ascorbic acid) at pH 8.0 and 37 degrees C.  相似文献   

12.
Using X-band electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopy at liquid helium temperatures, the Cu(II) coordination geometry at the active site of bovine and human copper,zinc-superoxide dismutases (bSOD1 and hSOD1) treated with H(2)O(2) and bicarbonate (HCO(3)(-)) was examined. The time course EPR of wild type human SOD1 (WT hSOD1), W32F hSOD1 mutant (tryptophan 32 substituted with phenylalanine), and bSOD1 treated with H(2)O(2) and HCO(3)(-) shows an initial reduction of active site Cu(II) to Cu(I) followed by its oxidation back to Cu(II) in the presence of H(2)O(2). However, HCO(3)(-) induced a Trp-32-derived radical from WT hSOD1 but not from bSOD1. The mutation of Trp-32 by phenylalanine totally eliminated the Trp-32 radical signal generated from W32F hSOD1 treated with HCO(3)(-) and H(2)O(2). Further characterization of the free radical was performed by UV irradiation of WT hSOD1 and bSOD1 that generated tryptophanyl and tyrosyl radicals. Both proton ((1)H) and nitrogen ((14)N) ENDOR studies of bSOD1 and hSOD1 in the presence of H(2)O(2) revealed a change in the geometry of His-46 (or His-44) and His-48 (or His-46) coordinated to Cu(II) at the active site of WT hSOD1 and bSOD1, respectively. However, in the presence of HCO(3)(-) and H(2)O(2), both (1)H and (14)N ENDOR spectra were almost identical to those derived from native bSOD1. We conclude that HCO(3)(-)-derived oxidant does not alter significantly the Cu(II) active site geometry and histidine coordination to Cu(II) in SOD1 as does H(2)O(2) alone; however, the oxidant derived from HCO(3)(-) (i.e. carbonate anion radical) reacts with surface-associated Trp-32 in hSOD1 to form the corresponding radical.  相似文献   

13.
The hydroxo-bridged dinuclear copper (II)/phen complex [Cu(2)(phen)(2)(OH)(2)(H(2)O)(2)][Cu(2)(phen)(2)(OH)(2)Cl(2)]Cl(2).6H(2)O (phen=1,10-phenanthroline) has been prepared and characterized by single crystal X-ray diffraction. The coordinated area of the complex shows two distorted [CuN(2)O(2)O(w)] and [CuN(2)O(2)Cl] square-pyramidal and one strictly planar configuration CuO(2)Cu involving two O atoms of hydroxo-bridged, Cu(2+) cations, N atoms of two phen ligands and disorder solvate water and chlorine anions. In the presence of H(2)O(2), the complex of mono(1,10-phenanthroline)copper exhibits higher activity as a nuclease than bis(1,10-phenanthroline)copper.  相似文献   

14.
The hydrolysis of glycylglycine (GylGly), glycyl-L-leucine (GlyLeu), L-leucylglycine (LeuGly) and glycyl-DL-serine (GlySer) promoted by a copper(II)- cis, cis-1,3,5-triaminocyclohexane complex [Cu(II)TACH] was investigated at 70 degrees C and pH 7-10, using HPLC. The observed pseudo-first-order rate constants (k(obs)) and rate enhancing factors (REF) were as follows: 4.1x10(-3 )h(-1)(REF=23) for GylGly, 1.6x10(-3 )h(-1)(REF=21) for GlyLeu, 5.1x10(-3 )h(-1)(REF=64) for LeuGly and 9.2x10(-2 )h(-1)(REF=47) for GlySer [pH 8.1, dipeptide 2 mM, copper(II) 2 mM and TACH 2 mM]. Based on the pH dependence and dipeptide concentration dependence of the initial rates and speciation of the Cu(II)-TACH-dipeptide system at 25 degrees C and I=0.1, the reactions proceed via the formation of a ternary complex [Cu(TACH)(dipeptide)](+) as an intermediate followed by OH(-)-dependent and OH(-)-independent paths to give amino acid(s). GylGly, GlyLeu and LeuGly preferred the OH(-)-dependent path, while GlySer preferred the OH(-)-independent path. The latter can be explained by the intramolecular attack of the amide carbonyl group coordinated with its oxygen atom by the OH group in the serine residue. The X-ray crystal structure of [Cu(TACH)(GlyGly)]BPh(4).MeOH confirmed that GlyGly coordinates to copper(II) ion with its terminal amino N and amide O atoms. The crystal structures of [Cu(TACH)(Gly)]BPh(4) and [Cu(2)(TACH)(2)(OH)(2)](ClO(4))(2).NaClO(4).H(2)O are also reported.  相似文献   

15.
The [Cu(sulfathiazolato)(2)(benzimidazole)(2)]2MeOH complex has been synthesised and characterised. It crystallises in the monoclinic system, space group C1c1, with unit cell dimensions a=18.829(7) A, b=12.206(3) A, c=17.233(5) A, alpha=90.06(2) degrees, beta=97.28(3) degrees, gamma=90.21(3) degrees and Z=4. The geometry around the copper(II) ion is intermediate between tetrahedral and square planar. The complex produces cleavage of plasmid pUC18 in presence of reducing agents. The efficiency of cleavage reaction of the title compound with pUC18 and with different reducing agents follows the order ascorbate-H(2)O(2)>ascorbate>MPA>dithiothreitol>H(2)O(2).  相似文献   

16.
Shields SB  Franklin SJ 《Biochemistry》2004,43(51):16086-16091
A chimeric Cu-binding peptide has been designed on the basis of a turn substitution of the prion (PrP) octarepeat Cu-binding site into the engrailed homeodomain helix-turn-helix motif (HTH). This system is a model for the investigation of a single PrP Cu-binding site in a defined protein context. The 28-mer Cu-HTH peptide P7 spectroscopically mimics the PrP octarepeat (P7 = TERRRQQLSHGGGWGEAQIKIWFQNKRA). The Cu(II)-binding affinity of P7 was determined by ESI-MS and tryptophan fluorescence titrations to be K(d) = 2.5 +/- 0.7 microM at pH = 7.0. The quenching of fluorescence of the Trp within the binding loop (underlined above) is pH dependent and highly specific for Cu(II). No Trp quenching was observed in the presence of divalent Zn, Mn, Co, Ni, or Ca ions, and ESI-MS titrations confirmed that these divalent ions do not appreciably bind to P7. The EPR spectrum of Cu(II)-P7 shows that the Cu environment is axial and consistent with 6-coordinate N(3)O(H(2)O)(2) or N(4)(H(2)O)(2) coordination (A( parallel) = 172 x10(-)(4) cm(-)(1); g( parallel) = 2.27), very similar to that of the PrP octarepeat itself. Also like PrP, circular dichroism studies show that apo P7 is predominantly disordered in solution, and the structure is slightly enhanced by Cu binding. These data show the Cu-PrP HTH peptide reproduces the Cu-binding behavior of a single PrP octarepeat in a new context.  相似文献   

17.
The compounds {[Cu(CMP)(Him)].H(2)O}(n) (I) and [Cu(CMP)(crea)H(2)O].3H(2)O (II) were synthesized and characterized by X-ray diffraction, thermal, spectral and magnetic methods (CMP=N-carboxymethyl-;l-prolinato(2-) ion, Him=imidazole and crea=creatinine). Appropriate structural comparison with other compounds such as {[Cu(CMP)(H(2)O)].H(2)O}(n), [Cu(crea)(2)Cl(2)] and [Cu(dipeptide)(crea)(H(2)O)(x)].nH(2)O (x=0 or 1) have been made in order to prove that crea can act as an imidazole-like ligand (because it is able to promote the same fac- to mer-CMP tridentate conformational change in copper(II) complexes) as well as to discuss the interligand interactions which control the 'Cu(CMP) complex-crea, molecular recognition processes. In contrast to that found in related ternary complexes, we have concluded that direct CMP-crea interligand interactions are missing in the Cu-CMP-crea complex due to the inappropriate correspondence between the donor and/or acceptor H-bonding properties of these ligands. CMP can only act as H-acceptor by its two terminal carboxylate group, and crea can display H-donor and H-acceptor roles by its exocyclic -NH(2) and O moieties, respectively. That promotes the reinforcement of the Cu-N(crea) bond by a bridge -N-H(crea)...O(aqua) (2.867(3)A, 176.4 degrees).  相似文献   

18.
The coordination geometry around copper(II) in [Cu(imda)(phen)(H2O)] (1) (H2imda = iminodiacetic acid, phen = 1,10-phenanthroline) is described as distorted octahedral while those in [Cu(imda)(5,6-dmp)] (2) (5,6-dmp = 5,6-dimethyl-1,10-phenanthroline) and [Cu(imda)(dpq)] (3) (dpq = dipyrido-[3,2-d:2',3'-f]-quinoxaline) as trigonal bipyramidal distorted square-based pyramidal with the imda anion facially coordinated to copper(II). Absorption spectral (Kb: 1, 0.60+/-0.04x10(3); 2, 3.9+/-0.3x10(3); 3, 1.7+/-0.5x10(4) M(-1)) and thermal denaturation studies (deltaTm: 1, 5.70+/-0.05; 2, 5.5+/-10; 3, 10.6+/-10 degrees C) and viscosity measurements indicate that 3 interacts with calf thymus DNA more strongly than 1 and 2. The relative viscosities of DNA bound to 1 and 3 increase while that of DNA bound to 2 decreases indicating formation of kinks or bends and/or conversion of B to A conformation as revealed by the decrease in intensity of the helicity band in the circular dichroism spectrum of DNA. While 1 and 3 are bound to DNA through partial intercalation, respectively, of phen ring and the extended planar ring of dpq with DNA base stack, the complex 2 is involved in groove binding. All the complexes show cleavage of pBR322 supercoiled DNA in the presence of ascorbic acid with the cleavage efficiency varying in the order 3 > 1 > 2. The highest oxidative DNA cleavage of dpq complex is ascribed to its highest Cu(II)/Cu(I) redox potential. Oxidative cleavage studies using distamycin reveal minor groove binding for the dpq complex but a major groove binding for the phen and 5,6-dmp complexes. Also, all the complexes show hydrolytic DNA cleavage activity in the absence of light or a reducing agent with cleavage efficiency varying in the order 1 > 3 > 2.  相似文献   

19.
The compound [Cu(2)(II)(D(1))(H(2)O)(2)](ClO(4))(4).2H(2)O [D(1)=binucleating ligand with tris(2-pyridylmethyl)amine (TMPA) moieties linked in the 5-pyridyl position by a -CH(2)CH(2)- bridge] mediated efficient oxidative cleavage of pBR322 plasmid DNA under reducing conditions. A mononuclear analogue, [Cu(TMPA)(H(2)O)](ClO(4))(2), was less effective at linearizing supercoiled (Form I) plasmid DNA as compared to the binuclear complex. A new method for quenching the copper-dependent reactions has been developed to avoid plasmid scission by the binuclear complex and the standard gel loading buffer. EDTA was not sufficient for retarding copper reaction, but diethyldithiocarbamic acid was capable of inhibiting all reactivity. Investigation of oxidative cleavage of double-helical oligonucleotides by [Cu(2)(II)(D(1))(H(2)O)(2)](ClO(4))(4) confirmed the enhanced reactivity of the binuclear over the mononuclear complex and provided mechanistic insights into the nature of the reaction. Cleavage of DNA required both the binuclear complex and a reductant and likely proceeded through an O(2)-derived intermediate that does not include a diffusible hydroxyl radical. The greater efficiency of the binuclear complex relative to the mononuclear analogue is consistent with their relative abilities to activate dioxygen.  相似文献   

20.
A new quinolone-metal complex was prepared by a hydrothermal reaction in the presence of L-histidine that served as a reducing agent for a metal. The title compound [Cu(II)(cfH)(2)(Cu(I)Cl(2))(2)] (1) is a mixed-valence Cu(II)-Cu(I) complex, which contains two ciprofloxacin (cfH) molecules bonded to the central copper(II) atom and two almost planar [Cu(I)Cl(2)](-) moieties. Both metal centers are connected through two bridging atoms (chloride and quinolone oxygen). The electrochemical methods (differential-pulse polarography and cyclovoltammetric measurements) confirmed the presence of various copper-ciprofloxacin complex species in aqueous solution at low concentrations used in biological activity tests and also indicated that the equilibria in this system are very complex. The biological properties of the title compound and some previously isolated copper-ciprofloxacin complexes ([Cu(cfH)(2)Cl(2)].6H(2)O (2) and [CuCl(cfH)(phen)]Cl.2H(2)O (3)) (phen=1, 10-phenantroline) were determined and compared. The DNA gyrase inhibition tests and antibacterial activity tests have shown that the effect of copper complexes is comparable to that of free quinolone. Additionally, an interesting DNA cleavage activity of the title compound was also discovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号