首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many of the more than 20 mammalian proteins with N-BAR domains control cell architecture and endocytosis by associating with curved sections of the plasma membrane. It is not well understood whether N-BAR proteins are recruited directly by processes that mechanically curve the plasma membrane or indirectly by plasma-membrane-associated adaptor proteins that recruit proteins with N-BAR domains that then induce membrane curvature. Here, we show that externally induced inward deformation of the plasma membrane by cone-shaped nanostructures (nanocones) and internally induced inward deformation by contracting actin cables both trigger recruitment of isolated N-BAR domains to the curved plasma membrane. Markedly, live-cell imaging in adherent cells showed selective recruitment of full-length N-BAR proteins and isolated N-BAR domains to plasma membrane sub-regions above nanocone stripes. Electron microscopy confirmed that N-BAR domains are recruited to local membrane sites curved by nanocones. We further showed that N-BAR domains are periodically recruited to curved plasma membrane sites during local lamellipodia retraction in the front of migrating cells. Recruitment required myosin-II-generated force applied to plasma-membrane-connected actin cables. Together, our results show that N-BAR domains can be directly recruited to the plasma membrane by external push or internal pull forces that locally curve the plasma membrane.  相似文献   

2.
Membrane domains in lymphocytes - from lipid rafts to protein scaffolds   总被引:1,自引:0,他引:1  
Lateral compartmentalization of the plasma membrane into domains is a key feature of immune cell activation and subsequent immune effector functions. Here, we will review the high diversity of membrane domains, ranging from elementary lipid rafts, envisioned as dynamic and small domains (in the tens of nm), to relatively stable μm-scale membrane domains, which form the immunologic synapse of T lymphocytes. We will discuss the relationship between these different types of plasma membrane domains and how raft lipid- and protein-controlled interactions and cell biological processes cooperate to generate functional domains that mediate lymphocyte activity.  相似文献   

3.
The current notion of biological membranes encompasses a very complex structure, made of dynamically changing compartments or domains where different membrane components partition. These domains have been related to important cellular functions such as membrane sorting, signal transduction, membrane fusion, neuronal maturation, and protein activation. Many reviews have dealt with membrane domains where lipid-lipid interactions direct their formation, especially in the case of raft domains, so in this review we considered domains induced by integral membrane proteins. The nature of the interactions involved and the different mechanisms through which membrane proteins segregate lipid domains are presented, in particular with regard to those induced by the nAChR. It may be concluded that coupling of favourable lipid-lipid and lipid-protein interactions is a general condition for this phenomenon to occur.  相似文献   

4.
The coexistence of lipid domains with different degrees of lipid packing in the plasma membrane of mammalian cells has been postulated, but direct evidence has so far been challenging to obtain because of the small size and short lifetime of these domains in live cells. Here, we use fluorescence spectral correlation spectroscopy in conjunction with a probe sensitive to the membrane environment to quantify spectral fluctuations associated with dynamics of membrane domains in live cells. With this method, we show that membrane domains are present in live COS-7 cells and have a lifetime lower bound of 5.90 and 14.69 ms for the ordered and disordered phases, respectively. Comparisons to simulations indicate that the underlying mechanism of these fluctuations is complex but qualitatively described by a combination of dye diffusion between membrane domains as well as the motion of domains within the membrane.  相似文献   

5.
This study systematically analyzed the structural and mechanistic basis of the regulation of subcellular membrane targeting using FYVE domains as a model. FYVE domains, which mediate the recruitment of signaling and membrane-trafficking proteins to phosphatidylinositol 3-phosphate-containing endosomes, exhibit distinct subcellular localization despite minor structural variations within the family. Biophysical measurements, cellular imaging, and computational analysis of various FYVE domains showed that the introduction of a single cationic residue and a hydrophobic loop into the membrane binding region of the FYVE domains dramatically enhanced their membrane interactions. The results indicated that there is a threshold affinity for endosomal localization and that endosomal targeting of FYVE domains is sensitive to small changes in membrane affinity about this threshold. Collectively these studies provide new insight into how subcellular localization of FYVE domains and other membrane targeting domains can be regulated by minimal structural and environmental changes.  相似文献   

6.
Formation of domains by the membrane binding motifs of caveolin and src were studied in large unilamellar vesicles using fluorescence digital imaging microscopy. Caveolin, a major structural protein of caveolae, contains a scaffolding region (residues 82-101) that contributes to the binding of the protein to the plasma membrane. A caveolin peptide (82-101) corresponding to this scaffolding region induced the formation of membrane domains enriched in the acidic lipids phosphatidylserine and phosphatidylinositol-4,5-bisphosphate. Cholesterol, another predominant component of caveolae, was also enriched in these domains. Caveolae also contain many different signaling molecules including src family tyrosine kinases. Src proteins bind to the plasma membrane via a N-terminal myristate chain and a cluster of basic residues that can interact electrostatically with negatively charged lipids. A peptide corresponding to the src membrane binding motifs (residues myr-2-19) sequestered acidic lipids into lateral membrane domains. Both the src and the caveolin peptides colocalized together with acidic lipids in the domains. Control experiments show the domains are not the result of vesicle aggregation. Two-photon fluorescence correlation spectroscopy experiments suggest diffusion in the domains was slower, but the domains were dynamic. Protein kinase C phosphorylated src in its N-terminal membrane binding region; however, the caveolin scaffolding peptide inhibited this activity. Consequently, protein-induced membrane domains may affect cell signaling by organizing signal transduction components within the membrane and changing reaction rates.  相似文献   

7.
BAR domains are highly conserved protein domains participating in a diversity of cellular processes that involve membrane remodeling. The mechanisms underlying such remodeling are debated. For the relatively well-studied case of amphiphysin N-BAR domain, one suggested mechanism involves scaffolding, i.e., binding of a negatively charged membrane to the protein's positively charged curved surface. An alternative mechanism suggests that insertion of the protein's N-terminal amphipathic segments (N-helices H0) into the membrane leads to bending. Here, we address the issue through all-atom and coarse-grained simulations of multiple amphiphysin N-BAR domains and their components interacting with a membrane. We observe that complete N-BAR domains and BAR domains without H0s bend the membrane, but H0s alone do not, which suggests that scaffolding, rather than helix insertion, plays a key role in membrane sculpting by amphiphysin N-BAR domains.  相似文献   

8.
Numerous cell membrane associated processes, including signal transduction, membrane sorting, protein processing and virus trafficking take place in membrane subdomains. Protein-protein interactions provide the frameworks necessary to generate biologically functional membrane domains. For example, coat proteins define membrane areas destined for sorting processes, viral proteins self-assemble to generate a budding virus, and adapter molecules organize multimolecular signalling assemblies, which catalyse downstream reactions. The concept of raft lipid-based membrane domains provides a different principle for compartmentalization and segregation of membrane constituents. Accordingly, rafts are defined by the physical properties of the lipid bilayer and function by selective partitioning of membrane lipids and proteins into membrane domains of specific phase behaviour and lipid packing. Here, I will discuss the interplay of these independent principles of protein scaffolds and raft lipid microdomains leading to the generation of biologically functional membrane domains.  相似文献   

9.
We have recently shown that two ATP binding cassette (ABC) transporters are enriched in Lubrol-resistant noncaveolar membrane domains in multidrug-resistant human cancer cells [Hinrichs, J. W. J., K. Klappe, I. Hummel, and J. W. Kok. 2004. ATP-binding cassette transporters are enriched in non-caveolar detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in human multidrug-resistant cancer cells. J. Biol. Chem. 279: 5734-5738]. Here, we show that aminophospholipids are relatively enriched in Lubrol-resistant membrane domains compared with Triton X-100-resistant membrane domains, whereas sphingolipids are relatively enriched in the latter. Moreover, Lubrol-resistant membrane domains contain more protein and lipid mass. Based on these results, we postulate a model for detergent-insoluble glycosphingolipid-enriched membrane domains consisting of a Lubrol-insoluble/Triton X-100-insoluble region and a Lubrol-insoluble/Triton X-100-soluble region. The latter region contains most of the ABC transporters as well as lipids known to be necessary for their efflux activity. Compared with drug-sensitive cells, the detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in drug-resistant cells differ specifically in sphingolipid content and not in protein, phospholipid, or cholesterol content. In drug-resistant cells, sphingolipids with specific fatty acids (especially C24:1) are enriched in these membrane domains. Together, these data show that multidrug resistance-associated changes in both sphingolipids and ABC transporters occur in DIGs, but in different regions of these domains.  相似文献   

10.
The plasma membrane contains distinct domains that are characterized by a high concentration of sphingolipids and cholesterol. These membrane microdomains also referred to as rafts, seem to be intimately involved in transmembranous signaling and often initiate interactions of pathogens and the host cell membranes. Here, we investigated the further reorganization of membrane rafts in cultured epithelial cells and ex vivo isolated nasal cells after infection with rhinoviruses. We demonstrate the formation of ceramide-enriched membrane platforms and large glycosphingolipid-enriched membrane domains and the co-localization of fluorochrome-labeled rhinoviruses with these membrane domains during attachment and uptake of human rhinovirus. Destruction of glycosphingolipid-enriched membrane domains blocked infection of human cells with rhinovirus. Furthermore, our studies indicate that the activation of the acid sphingomyelinase (ASM) is intrigued in the formation of ceramide- or GM1- enriched membrane platforms. Inhibition of the ASM reduces the number of ceramide-enriched platforms and glycosphingolipid-enriched membrane domains. These data reveal a critical role of the ASM for the formation of membrane platforms and infection of human cells with rhinoviruses.  相似文献   

11.
Takeda T  Chang F 《Current biology : CB》2005,15(14):1331-1336
Specialized membrane domains containing lipid rafts are thought to be important for membrane processes such as signaling and trafficking. An unconventional type I myosin has been shown to reside in lipid rafts and function to target a disaccharidase to rafts in brush borders of intestinal mammalian cells. In the fission yeast Schizosaccharomyces pombe, distinct sterol-rich membrane domains are formed at the cell division site and sites of polarized cell growth at cell tips. Here, we show that the sole S. pombe myosin I, myo1p, is required for proper organization of these membrane domains. myo1 mutants lacking the TH1 domain exhibit a uniform distribution of sterol-rich membranes all over the plasma membrane throughout the cell cycle. These effects are independent of endocytosis because myo1 mutants exhibit no endocytic defects. Conversely, overexpression of myo1p induces ectopic sterol-rich membrane domains. Myo1p localizes to nonmotile foci that cluster in sterol-rich plasma membrane domains and fractionates with detergent-resistant membranes. Because the myo1p TH1 domain may bind directly to acidic phospholipids, these findings suggest a model for how type I myosin contributes to the organization of specialized membrane domains.  相似文献   

12.
The plasma membrane of the mature guinea pig sperm is segregated into at least four domains of different composition. Previous studies have shown that some proteins localized within these domains are free to diffuse laterally, suggesting that barriers to protein diffusion are responsible for maintaining the nonuniform distribution of at least some surface proteins in mature sperm. The different membrane domains appear sequentially during sperm morphogenesis in the testis and during later passage through the epididymis. To determine when diffusion barriers become functional during sperm development, we examined the diffusion of two proteins that are expressed on the cell surface of developing spermatids and become segregated to different plasma membrane domains during the course of spermiogenesis. Both proteins exhibited rapid lateral diffusion throughout spermiogenesis, even after they become localized to specific regions of the surface membrane. These results suggest that barriers to membrane diffusion form concomitantly with membrane domains during spermiogenesis.  相似文献   

13.
K McGovern  M Ehrmann    J Beckwith 《The EMBO journal》1991,10(10):2773-2782
We have used genetic methods to investigate the role of the different domains of a bacterial cytoplasmic membrane protein, MalF, in determining its topology. This was done by analyzing the effects of MalF topology of deleting various domains of the protein using MalF-alkaline phosphatase fusion proteins. Our results show that the cytoplasmic domains of the protein are the pre-eminent topogenic signals. These domains contain information that determines their cytoplasmic location and, thus, the orientation of the membrane spanning segments surrounding them. Periplasmic domains do not appear to have equivalent information specifying their location and membrane spanning segments do not contain information defining their orientation in the membrane. The strength of cytoplasmic domains as topogenic signals varies, correlated with the density of positively charged amino acids within them.  相似文献   

14.
BAR domains are proteins that sense and sculpt curved membranes in cells, furnishing a relatively well-studied example of mechanisms employed in cellular morphogenesis. We report a computational study of membrane bending by BAR domains at four levels of resolution, described by 1), all-atom molecular dynamics; 2), residue-based coarse-graining (resolving single amino acids and lipid molecules); 3), shape-based coarse-graining (resolving overall protein and membrane shapes); and 4), a continuum elastic membrane model. Membrane sculpting performed by BAR domains collectively is observed in agreement with experiments. Different arrangements of BAR domains on the membrane surface are found to lead to distinct membrane curvatures and bending dynamics.  相似文献   

15.
Rodgers W 《BioTechniques》2002,32(5):1044-6, 1048, 1050-1
Cell membranes contain glycolipid-enriched membrane (GEM) domains, or lipid rafts. GEM domains represent a discrete assembly ofproteins and lipids within the plasma membrane thatfunctions in cell signaling. However, studies of the GEM domains often include the disruption of cells with detergent. Thus, many of the physical and biological properties of GEM domains remain unknown and even controversial. An approach to study these domains but avoid detergent lysis is to measure their properties using the fluorescence imaging of live cells. Accordingly, GFP was targeted to either the GEM or the non-GEMfraction of the plasma membrane using the minimal membrane-anchoring signals of p56lck and pp60c-Src, respectively. The targeting of the fusion proteins to the respective membrane fractions was assayed by membrane fractionation and by quantitating the enrichment in GEM caps in stimulated T cells. The results show that the GEM marker was targeted to GEM domains with similar efficiency as other GEM-associated proteins. Conversely, the non-GEM marker was completely excluded from GEM domains. These constructs represent a useful toolfor studying the discrete fractions of the plasma membrane in live cells using fluorescence imaging.  相似文献   

16.
The nine membrane-bound mammalian adenylyl cyclases (ACs) contain two highly diverged membrane anchors, M1 and M2, with six transmembrane spans each and two conserved cytosolic domains which coalesce into a pseudoheterodimeric catalytic unit. Previously, the catalytic segments, bacterially expressed as soluble proteins, were characterized extensively whereas the function of the membrane domains remained unexplored. Using the catalytic C1 and C2 domains of AC type V we employed the membrane anchors from type V and VII ACs for construction of enzymes with duplicated, inverted, fully swapped and chimeric membrane anchors. Further, in the M1 membrane domain individual transmembrane spans were removed or exchanged between type V and VII ACs. The constructs were expressed in HEK293 cells, the expression levels and membrane localization was assessed by Western blotting. Cell-free basal, forskolin-, GTP gamma S-and G(s alpha)/GTP gamma S-stimulated AC activities were determined. The results demonstrate that enzymatic activities were only maintained when the M1 and M2 membrane domains were derived from either AC V or VII. Constructs with chimeric membrane domains, i.e. M1 from type V and M2 from type VII AC or vice versa, were essentially inactive although the expression levels and membrane localization appeared to be normal. The data indicate a functionally important interaction of the membrane domains of ACs in that they seem to interact in a pair-like, isoform delimited manner. This interaction directly impinges on the formation of the catalytic interface. We propose that protein-protein interactions of the AC membrane domains may constitute another, yet unexplored level of AC regulation.  相似文献   

17.
Spermiogenesis affords a unique opportunity to examine the formation of plasma membrane domains. Recent attempts to chart the life cycles of well-characterized integral plasma membrane proteins during spermiogenesis have suggested that spermatids are at least as adept as epithelial cells or neurons at establishing their plasma membrane domains. They appear to expand upon the standard recipe involving concurrent domain-specific protein targeting and diffusion barriers by using a combination of intracellular storage within the secretory pathway, developmentally-regulated delivery to provisional plasma membrane domains, large-scale redistributions of diffusion barriers and integral plasma membrane proteins, and the shedding of an entire plasma membrane domain.  相似文献   

18.
Eukaryotic signaling and trafficking proteins are rich in modular domains that bind cell membranes. These binding events are tightly regulated in space and time. The structural, biochemical, and biophysical mechanisms for targeting have been worked out for many families of membrane binding domains. This review takes a comparative view of seven major classes of membrane binding domains, the C1, C2, PH, FYVE, PX, ENTH, and BAR domains. These domains use a combination of specific headgroup interactions, hydrophobic membrane penetration, electrostatic surface interactions, and shape complementarity to bind to specific subcellular membranes.  相似文献   

19.
Plasma membrane microdomains   总被引:13,自引:0,他引:13  
Several lines of evidence indicate that the lipids in the plasma membrane of animal cells are inhomogeneously distributed, and that various types of specialized lipid domains play an important role in many biological processes. The characteristics of these domains, such as size, composition and dynamics, are currently under active investigation. It appears that there are many different types of membrane domains in the plasma membrane, and perhaps the entire membrane should be viewed as a mosaic of microdomains.  相似文献   

20.
An interdependence between local curvature and domain formation has been observed in both cell and model membranes. An implication of this observation is that domain formation in model membranes may be modulated by membrane curvature. In this paper, small-angle neutron scattering (SANS) is used to examine the influence of membrane curvature (i.e., vesicle size) on the formation of membrane domains. It is found that, although vesicle size and polydispersity are not significantly altered by the formation of membrane domains, the area fraction occupied by domains depends on the overall vesicle size. In particular, increasing membrane curvature (i.e., decreasing vesicle size) results in increased area fractions of membrane domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号