首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tec family kinases have important roles in lymphocytes; however, little is known about their function in monocytes/macrophages. In this study we report that Tec family kinases are essential for M-CSF (M-CSF)-induced signaling pathways that regulate macrophage survival. Compared with wild-type bone marrow-derived macrophage (BMM) cultures, Tec(-/-)Btk(-/-) BMM cultures displayed increased cell death that correlated with a severe drop in macrophage numbers. In addition, macrophages deficient in either Tec or Btk showed expression and activation of caspase-11. Elucidation of M-CSF receptor (M-CSFR) signaling pathways revealed that the total tyrosine phosphorylation pattern upon M-CSF stimulation was altered in Tec(-/-)Btk(-/-) macrophages despite normal expression and phosphorylation of the M-CSFR. Further, Tec and Btk are required for proper expression of the GM-CSF receptor alpha (GM-CSFRalpha) chain in macrophages but not dendritic cells, implicating Tec family kinases in the lineage-specific regulation of GM-CSFRalpha expression. Taken together, our study shows that Tec and Btk regulate M-CSFR signaling-induced macrophage survival and provides a novel link between Tec family kinases and the regulation of caspase-11 and GM-CSFRalpha expression.  相似文献   

2.
The receptor activator of NF-κB (RANK) and immunoreceptor tyrosine-based activation motif (ITAM)-containing adaptors are essential factors involved in regulating osteoclast formation and bone remodeling. Here, we identify early estrogen-induced gene 1 (EEIG1) as a novel RANK ligand (RANKL)-inducible protein that physically interacts with RANK and further associates with Gab2, PLCγ2 and Tec/Btk kinases upon RANKL stimulation. EEIG1 positively regulates RANKL-induced osteoclast formation, likely due to its ability to facilitate RANKL-stimulated PLCγ2 phosphorylation and NFATc1 induction. In addition, an inhibitory peptide designed to block RANK-EEIG1 interaction inhibited RANKL-induced bone destruction by reducing osteoclast formation. Together, our results identify EEIG1 as a novel RANK signaling component controlling RANK-mediated osteoclast formation, and suggest that targeting EEIG1 might represent a new therapeutic strategy for the treatment of pathological bone resorption.  相似文献   

3.
Tec family nonreceptor tyrosine kinases are expressed by hematopoietic cells, activate phospholipase C (PLC)gamma, and regulate cytoskeletal rearrangement, yet their role in FcgammaR-induced signaling and phagocytosis remains unknown. We demonstrate in this study that Bruton's tyrosine kinase (Btk) and Tec, the only Tec kinases expressed by RAW 264.7 cells, are activated throughout phagocytosis. Activated Btk and Tec kinase accumulate at an early stage at the base of phagocytic cups and inhibition of their activity by the specific inhibitor LFM-A13 or expression by small interfering RNA significantly inhibited FcgammaR-induced phagocytosis. Similarly, a significant role for these kinases in phagocytosis was found in primary macrophages. FcgammaR-induced activation of Mac-1, which is required for optimal phagocytosis, was markedly inhibited and our findings suggest that the roles of kinases Btk and Tec in Mac-1 activation account for their functions in the early stages of phagocytosis. Initial activation of PLCgamma2, the predominant PLC isoform in RAW 264.7 cells, is dependent on Syk. In contrast, a late and prolonged activation of PLCgamma2 was dependent on Btk and Tec. We found accumulation of diacylglycerol (DAG), a PLCgamma product, in phagosome membranes, and activated Btk, but not Tec, colocalized with phagosomal DAG. Inhibition of Tec family kinase activity increased the level of DAG in phagosomes, suggesting a negative regulatory role for Btk. Tec, in contrast, clustered at sites near phagosome formation. In summary, we elucidated that Tec family kinases participate in at least two stages of FcgammaR-mediated phagocytosis: activation of Mac-1 during ingestion, and after phagosome formation, during which Btk and Tec potentially have distinct roles.  相似文献   

4.
Bruton's tyrosine kinase (Btk) is mutated in X-linked agammaglobulinemia patients and plays an essential role in B cell receptor signal transduction. Btk is a member of the Tec family of nonreceptor protein-tyrosine kinases that includes Bmx, Itk, Tec, and Txk. Cell lines deficient for Btk are impaired in phospholipase C-gamma2 (PLCgamma2)-dependent signaling. Itk and Tec have recently been shown to reconstitute PLCgamma2-dependent signaling in Btk-deficient human cells, but it is not known whether the atypical Tec family members, Bmx and Txk, can reconstitute function. Here we reconstitute Btk-deficient DT40 B cells with Bmx and Txk to compare their function with other Tec kinases. We show that in common with Itk and Tec, Bmx reconstituted PLCgamma2-dependent responses including calcium mobilization, extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) activation, and apoptosis. Txk also restored PLCgamma2/calcium signaling but, unlike other Tec kinases, functioned in a phosphatidylinositol 3-kinase-independent manner and failed to reconstitute apoptosis. These results are consistent with a common role for Tec kinases as amplifiers of PLCgamma2-dependent signal transduction, but suggest that the pleckstrin homology domain of Tec kinases, absent in Txk, is essential for apoptosis.  相似文献   

5.
Mutations in Bruton's tyrosine kinase (Btk) result in X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (xid) in mice. While targeted disruption of the protein kinase C-beta (PKCbeta) gene in mice results in an immunodeficiency similar to xid, the overall tyrosine phosphorylation of Btk is significantly enhanced in PKCbeta-deficient B cells. We provide direct evidence that PKCbeta acts as a feedback loop inhibitor of Btk activation. Inhibition of PKCbeta results in a dramatic increase in B-cell receptor (BCR)-mediated Ca2+ signaling. We identified a highly conserved PKCbeta serine phosphorylation site in a short linker within the Tec homology domain of Btk. Mutation of this phosphorylation site led to enhanced tyrosine phosphorylation and membrane association of Btk, and augmented BCR and FcepsilonRI-mediated signaling in B and mast cells, respectively. These findings provide a novel mechanism whereby reversible translocation of Btk/Tec kinases regulates the threshold for immunoreceptor signaling and thereby modulates lymphocyte activation.  相似文献   

6.
Bruton's tyrosine kinase (Btk) is essential for B-lineage development and represents an emerging family of non-receptor tyrosine kinases implicated in signal transduction events initiated by a range of cell surface receptors. Increased dosage of Btk in normal B cells resulted in a striking enhancement of extracellular calcium influx following B-cell antigen receptor (BCR) cross-linking. Ectopic expression of Btk, or related Btk/Tec family kinases, restored deficient extracellular Ca2+ influx in a series of novel Btk-deficient human B-cell lines. Btk and phospholipase Cgamma (PLCgamma) co-expression resulted in tyrosine phosphorylation of PLCgamma and required the same Btk domains as those for Btk-dependent calcium influx. Receptor-dependent Btk activation led to enhanced peak inositol trisphosphate (IP3) generation and depletion of thapsigargin (Tg)-sensitive intracellular calcium stores. These results suggest that Btk maintains increased intracellular calcium levels by controlling a Tg-sensitive, IP3-gated calcium store(s) that regulates store-operated calcium entry. Overexpression of dominant-negative Syk dramatically reduced the initial phase calcium response, demonstrating that Btk/Tec and Syk family kinases may exert distinct effects on calcium signaling. Finally, co-cross-linking of the BCR and the inhibitory receptor, FcgammaRIIb1, completely abrogated Btk-dependent IP3 production and calcium store depletion. Together, these data demonstrate that Btk functions at a critical crossroads in the events controlling calcium signaling by regulating peak IP3 levels and calcium store depletion.  相似文献   

7.
Bruton's tyrosine kinase (Btk), a member of the Tec family of protein-tyrosine kinases, has been shown to be crucial for B cell development, differentiation, and signaling. Mutations in the Btk gene lead to X-linked agammaglobulinemia in humans and X-linked immunodeficiency in mice. Using a co-transfection approach, we present evidence here that Btk interacts physically with caveolin-1, a 22-kDa integral membrane protein, which is the principal structural and regulatory component of caveolae membranes. In addition, we found that native Bmx, another member of the Tec family kinases, is associated with endogenous caveolin-1 in primary human umbilical vein endothelial cells. Second, in transient transfection assays, expression of caveolin-1 leads to a substantial reduction in the in vivo tyrosine phosphorylation of both Btk and its constitutively active form, E41K. Furthermore, a caveolin-1 scaffolding peptide (amino acids 82--101) functionally suppressed the autokinase activity of purified recombinant Btk protein. Third, we demonstrate that mouse splenic B-lymphocytes express substantial amounts of caveolin-1. Interestingly, caveolin-1 was found to be constitutively phosphorylated on tyrosine 14 in these cells. The expression of caveolin-1 in B-lymphocytes and its interaction with Btk may have implications not only for B cell activation and signaling, but also for antigen presentation.  相似文献   

8.
Heinonen JE  Smith CI  Nore BF 《FEBS letters》2002,527(1-3):274-278
Tec family tyrosine kinases, Bruton's tyrosine kinase (Btk), Itk, Bmx, Tec, and Txk, are multi-domain proteins involved in hematopoietic signaling. Here, we demonstrate that human Btk protein can transiently be depleted using double-stranded short RNA interference (siRNA) oligonucleotides. Imaging and Western blotting analysis demonstrate that Btk expression is down regulated in heterologous systems as well as in hematopoietic lineages, following transfection or microinjection of Btk siRNA duplexes. The induction of histamine release, a pro-inflammatory mediator, in RBL-2H3 mast cells was reduced by 20-25% upon Btk down regulation. Similar, results were obtained when the Btk activity was inhibited using the kinase blocker LFM-A13. These results demonstrate a direct role of Btk for the efficient secretion of histamine in allergic responses.  相似文献   

9.
Tyrosine phosphorylation of phospholipase Cgamma2 (PLCgamma2) is a crucial activation switch that initiates and maintains intracellular calcium mobilization in response to B cell antigen receptor (BCR) engagement. Although members from three distinct families of non-receptor tyrosine kinases can phosphorylate PLCgamma in vitro, the specific kinase(s) controlling BCR-dependent PLCgamma activation in vivo remains unknown. Bruton's tyrosine kinase (Btk)-deficient human B cells exhibit diminished inositol 1,4,5-trisphosphate production and calcium signaling despite a normal inducible level of total PLCgamma2 tyrosine phosphorylation. This suggested that Btk might modify a critical subset of residues essential for PLCgamma2 activity. To evaluate this hypothesis, we generated site-specific phosphotyrosine antibodies recognizing four putative regulatory residues within PLCgamma2. Whereas all four sites were rapidly modified in response to BCR engagement in normal B cells, Btk-deficient B cells exhibited a marked reduction in phosphorylation of the Src homology 2 (SH2)-SH3 linker region sites, Tyr(753) and Tyr(759). Phosphorylation of both sites was restored by expression of Tec, but not Syk, family kinases. In contrast, phosphorylation of the PLCgamma2 carboxyl-terminal sites, Tyr(1197) and Tyr(1217), was unaffected by the absence of functional Btk. Together, these data support a model whereby Btk/Tec kinases control sustained calcium signaling via site-specific phosphorylation of key residues within the PLCgamma2 SH2-SH3 linker.  相似文献   

10.
11.
Mast cells express the high-affinity receptor for IgE (FcεRI) and are key players in type I hypersensitivity reactions. They are critically involved in the development of allergic rhinitis, allergic asthma and systemic anaphylaxis, however, they also regulate normal physiological processes that link innate and adaptive immune responses. Thus, their activation has to be tightly controlled. One group of signaling molecules that are activated upon FcεRI stimulation is formed by Tec family kinases, and three members of this kinase family (Btk, Itk and Tec) are expressed in mast cells. Many studies have revealed important functions of Tec kinases in signaling pathways downstream of the antigen receptors in lymphocytes. This review summarizes the current knowledge about the function of Tec family kinases in FcεRI-mediated signaling pathways in mast cell.  相似文献   

12.
Boyce BF  Xing L 《Cell metabolism》2008,7(4):283-285
Enhanced and deficient immune responses are associated with abnormal bone homeostasis. A new study by Shinohara et al. (2008) shows that protein phosphorylation by the tyrosine kinases Bruton and Tec links immunity and bone as well as two signaling pathways in precursors of osteoclasts, the cells that degrade bone.  相似文献   

13.
Cytoplasmic protein-tyrosine kinases (PTKs) are enzymes involved in transducing a vast number of signals in metazoans. The importance of the Tec family of kinases was immediately recognized when, in 1993, mutations in the gene encoding Bruton's tyrosine kinase (Btk) were reported to cause the human disease X-linked agammaglobulinemia (XLA). Since then, additional kinases belonging to this family have been isolated, and the availability of full genome sequences allows identification of all members in selected species enabling phylogenetic considerations. Tec kinases are endowed with Pleckstrin homology (PH) and Tec homology (TH) domains and are involved in diverse biological processes related to the control of survival and differentiation fate. Membrane translocation resulting in the activation of Tec kinases with subsequent Ca2+ release seems to be a general feature. However, nuclear translocation may also be of importance. The purpose of this essay is to characterize members of the Tec family and discuss their involvement in signaling. The three-dimensional structure, expression pattern and evolutionary aspects will also be considered.  相似文献   

14.
The Tec family is a recently emerging subfamily of non-receptor protein-tyrosine kinases (PTKs) represented by its first member, Tec. This family is composed of five members, namely Tec, Btk, Itk/Emt/Tsk, Bmx and Txk/Rlk. The most characteristic feature of this family is the presence of a pleckstrin homology (PH) domain in their protein structure. The PH domain is known to bind phosphoinositides; on this basis, Tec family PTKs may act as merge points of phosphotyrosine-mediated and phospholipid-mediated signaling systems. Many Tec family proteins are abundantly expressed in hematopoietic tissues, and are presumed to play important roles in the growth and differentiation processes of blood cells. Supporting this, mutations in the Btk gene cause X chromosome-linked agammaglobulinemia (XLA) in humans and X chromosome-linked immunodeficiency (Xid) in mice, indicating that Btk activity is indispensable for B-cell ontogeny. In addition, Tec family kinases have been shown to be involved in the intracellular signaling mechanisms of cytokine receptors, lymphocyte surface antigens, heterotrimeric G-protein-coupled receptors and integrin molecules. Efforts are being made to identify molecules which interact with Tec kinases to transfer Tec-mediated signals in vivo. Candidates for such second messengers include PLC-γ2, guanine nucleotide exchange factors for RhoA and TFII-I/BAP-135. This review summarizes current knowledge concerning the input and output factors affecting the Tec kinases.  相似文献   

15.
Tyrosine kinase pathways are known to play an important role in the activation of platelets. In particular, the GPVI and CLEC-2 receptors are known to activate Syk upon tyrosine phosphorylation of an immune tyrosine activation motif (ITAM) and hemITAM, respectively. However, unlike GPVI, the CLEC-2 receptor contains only one tyrosine motif in the intracellular domain. The mechanisms by which this receptor activates Syk are not completely understood. In this study, we identified a novel signaling mechanism in CLEC-2-mediated Syk activation. CLEC-2-mediated, but not GPVI-mediated, platelet activation and Syk phosphorylation were abolished by inhibition of PI3K, which demonstrates that PI3K regulates Syk downstream of CLEC-2. Ibrutinib, a Tec family kinase inhibitor, also completely abolished CLEC-2-mediated aggregation and Syk phosphorylation in human and murine platelets. Furthermore, embryos lacking both Btk and Tec exhibited cutaneous edema associated with blood-filled vessels in a typical lymphatic pattern similar to CLEC-2 or Syk-deficient embryos. Thus, our data show, for the first time, that PI3K and Tec family kinases play a crucial role in the regulation of platelet activation and Syk phosphorylation downstream of the CLEC-2 receptor.  相似文献   

16.
Mast cells are critical effector cells in the pathophysiology of allergic asthma and other IgE-mediated diseases. The Tec family of tyrosine kinases Itk and Btk serve as critical signal amplifiers downstream of antigen receptors. Although both kinases are expressed and activated in mast cells following FcεRI stimulation, their individual contributions are not clear. To determine whether these kinases play unique and/or complementary roles in FcεRI signaling and mast cell function, we generated Itk and Btk double knock-out mice. Analyses of these mice show decreased mast cell granularity and impaired passive systemic anaphylaxis responses. This impaired response is accompanied by a significant elevation in serum IgE in Itk/Btk double knock-out mice. In vitro analyses of bone marrow-derived mast cells (BMMCs) indicated that Itk/Btk double knock-out BMMCs are defective in degranulation and cytokine secretion responses downstream to FcεRI activation. These responses were accompanied by a significant reduction in PLCγ2 phosphorylation and severely impaired calcium responses in these cells. This defect also results in altered NFAT1 nuclear localization in double knock-out BMMCs. Network analysis suggests that although they may share substrates, Itk plays both positive and negative roles, while Btk primarily plays a positive role in mast cell FcεRI-induced cytokine secretion.  相似文献   

17.
Thymic stromal lymphopoietin (TSLP) is a cytokine that plays diverse roles in the regulation of immune responses. TSLP requires a heterodimeric receptor complex consisting of IL-7 receptor α subunit and its unique TSLP receptor (gene symbol CRLF2) to transmit signals in cells. Abnormal TSLP signaling (e.g. overexpression of TSLP or its unique receptor TSLPR) contributes to the development of a number of diseases including asthma and leukemia. However, a detailed understanding of the signaling pathways activated by TSLP remains elusive. In this study, we performed a global quantitative phosphoproteomic analysis of the TSLP signaling network using stable isotope labeling by amino acids in cell culture. By employing titanium dioxide in addition to antiphosphotyrosine antibodies as enrichment methods, we identified 4164 phosphopeptides on 1670 phosphoproteins. Using stable isotope labeling by amino acids in cell culture-based quantitation, we determined that the phosphorylation status of 226 proteins was modulated by TSLP stimulation. Our analysis identified activation of several members of the Src and Tec families of kinases including Btk, Lyn, and Tec by TSLP for the first time. In addition, we report TSLP-induced phosphorylation of protein phosphatases such as Ptpn6 (SHP-1) and Ptpn11 (Shp2), which has also not been reported previously. Co-immunoprecipitation assays showed that Shp2 binds to the adapter protein Gab2 in a TSLP-dependent manner. This is the first demonstration of an inducible protein complex in TSLP signaling. A kinase inhibitor screen revealed that pharmacological inhibition of PI-3 kinase, Jak family kinases, Src family kinases or Btk suppressed TSLP-dependent cellular proliferation making them candidate therapeutic targets in diseases resulting from aberrant TSLP signaling. Our study is the first phosphoproteomic analysis of the TSLP signaling pathway that greatly expands our understanding of TSLP signaling and provides novel therapeutic targets for TSLP/TSLPR-associated diseases in humans.  相似文献   

18.
19.
Joseph RE  Min L  Xu R  Musselman ED  Andreotti AH 《Biochemistry》2007,46(18):5595-5603
During T cell signaling, Itk selectively phosphorylates a tyrosine within its own SH3 domain and a tyrosine within PLCgamma1. We find that the remote SH2 domain in each of these substrates is required to achieve efficient tyrosine phosphorylation by Itk and extend this observation to two other Tec family kinases, Btk and Tec. Additionally, we detect a stable interaction between the substrate SH2 domains and the kinase domain of Itk and find that addition of specific, exogenous SH2 domains to the in vitro kinase assay competes directly with substrate phosphorylation. On the basis of these results, we show that the kinetic parameters of a generic peptide substrate of Itk are significantly improved via fusion of the peptide substrate to the SH2 domain of PLCgamma1. This work is the first characterization of a substrate docking mechanism for the Tec kinases and provides evidence of a novel, phosphotyrosine-independent regulatory role for the ubiquitous SH2 domain.  相似文献   

20.
Tec family protein tyrosine kinases (TFKs) play a central role in hematopoietic cellular signaling. Initial activation takes place through specific tyrosine phosphorylation situated in the activation loop. Further activation occurs within the SH3 domain via a transphosphorylation mechanism, which for Bruton's tyrosine kinase (Btk) affects tyrosine 223. We found that TFKs phosphorylate preferentially their own SH3 domains, but differentially phosphorylate other member family SH3 domains, whereas non-related SH3 domains are not phosphorylated. We demonstrate that SH3 domains are good and reliable substrates. We observe that transphosphorylation is selective not only for SH3 domains, but also for dual SH3SH2 domains. However, the dual domain is phosphorylated more effectively. The major phosphorylation sites were identified as conserved tyrosines, for Itk Y180 and for Bmx Y215, both sites being homologous to the Y223 site in Btk. There is, however, one exception because the Tec-SH3 domain is phosphorylated at a non-homologous site, nevertheless a conserved tyrosine, Y206. Consistent with these findings, the 3D structures for SH3 domains point out that these phosphorylated tyrosines are located on the ligand-binding surface. Because a number of Tec family kinases are coexpressed in cells, it is possible that they could regulate the activity of each other through transphosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号