首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main physicochemical characteristics of the major isoform of the laccase secreted by the fungus Trametes hirsuta 072 were studied. The enzyme belongs to the group of high redox potential laccases (E T1 0 790 ± 5), and it oxidizes with high efficiency various substrates of phenolic nature. The gene of this isoform was cloned, and its nucleotide sequence was determined. The length of the complete gene is 2134 bp. It comprises 11 exons and 10 introns. Analysis of the amino acid sequence of T. hirsuta 072 laccase demonstrated a high homology to the other laccases secreted by fungi of the genus Trametes.  相似文献   

2.
New strains of basidiomycetes producing extracellular laccases (Trametes ochracea 92-78, and Trametes hirsuta 56) have been found by screening of isolates of Trametes fungi. The laccases from T. hirsuta 56 and T. ochracea 92-78 as well as two laccases from previously found and described strains of basidiomycetes, namely Cerrena maxima and Coriolopsis fulvocinerea, were purified to homogeneity. The standard redox potentials of type 1 copper in the enzymes were determined and found to be 780, 790, 750, and 780 mV, respectively. The spectral and biochemical studies showed that the enzymes had no significant differences between the structures of their active sites (T1, T2, and T3). In spite of this fact, the basic biochemical properties as well as the redox potentials of the T1 sites of the enzymes were found to be different. The molecular weights of the laccases range from 64 to 70 kDa, and their pI values range from 3.5 to 4.7. The pH-optima are in the range 3.5-5.2. The temperature optimum for activity is about 50 degrees C. The thermal stabilities of the enzymes were studied. The catalytic and Michaelis constants for catechol, guaiacol, hydroquinone, sinapinic acid, and K(4)Fe(CN)(6) were determined. Based on these results as well as results obtained by comparing with published properties of several laccases, it could be concluded that T. hirsuta and Cerrena maxima laccases have some superior characteristics such as high stability, high activity, and low carbohydrate content, making them attractive objects for further investigations as well as for application in different areas of biotechnology.  相似文献   

3.
A laccase from the thermophilic fungus Melanocarpus albomyces was shown to bind to softwood and pure microcrystalline cellulose. The binding isotherm fitted well the Langmuir type one-site binding model. The adsorption parameters indicated that M. albomyces laccase binds with high affinity to cellulose with a relatively low maximum binding capacity, as compared to the values for various cellulases. The binding was shown to be reversible and not influenced by non-specific protein or 0.1-0.5 M Na2SO4. No binding was detected with laccases from Trametes hirsuta or Mauginiella sp., which suggests that binding to cellulose is typical for only some laccases.  相似文献   

4.
5.
AIM: To produce high laccase activities from the white-rot fungus Trametes hirsuta in an in-house air-lift bioreactor (ALB). METHODS AND RESULTS: Trametes hirsuta was grown in a 6-l ALB. A fed-batch strategy with glycerol as an addition resulted in maximum laccase activity of 19,400 U l(-1), which was the highest reported from the fungus. CONCLUSION: The ALB configuration with additional glycerol resulted in high laccase activities. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides useful information on how to produce high concentrations of laccase.  相似文献   

6.
7.
The de novo engineering of new proteins will allow the design of complex systems in synthetic biology. But the design of large proteins is very challenging due to the large combinatorial sequence space to be explored and the lack of a suitable selection system to guide the evolution and optimization. One way to approach this challenge is to use computational design methods based on the current crystallographic data and on molecular mechanics. We have used a laccase protein fold as a scaffold to design a new protein sequence that would adopt a 3D conformation in solution similar to a wild-type protein, the Trametes versicolor (TvL) fungal laccase. Laccases are multi-copper oxidases that find utility in a variety of industrial applications. The laccases with highest activity and redox potential are generally secreted fungal glycoproteins. Prokaryotic laccases have been identified with some desirable features, but they often exhibit low redox potentials. The designed sequence (DLac) shares a 50% sequence identity to the original TvL protein. The new DLac gene was overexpressed in E. coli and the majority of the protein was found in inclusion bodies. Both soluble protein and refolded insoluble protein were purified, and their identity was verified by mass spectrometry. Neither protein exhibited the characteristic T1 copper absorbance, neither bound copper by atomic absorption, and neither was active using a variety of laccase substrates over a range of pH values. Circular dichroism spectroscopy studies suggest that the DLac protein adopts a molten globule structure that is similar to the denatured and refolded native fungal TvL protein, which is significantly different from the natively secreted fungal protein. Taken together, these results indicate that the computationally designed DLac expressed in E. coli is unable to utilize the same folding pathway that is used in the expression of the parent TvL protein or the prokaryotic laccases. This sequence can be used going forward to help elucidate the sequence requirements needed for prokaryotic multi-copper oxidase expression. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11693-011-9080-9) contains supplementary material, which is available to authorized users.  相似文献   

8.
A putative laccase cDNA from a white-rot basidiomycete, Trametes versicolor, that consisted of 1,769 nucleotides was cloned using the rapid amplification of cDNA ends (RACE)-PCR method. The deduced amino acid sequence had 4 putative copper binding regions, which are common to fungal laccases. In addition, the sequence was 57 approximately 97 % homologous to sequences of other T. versicolor laccases. Additionally, the expression of laccase and manganese peroxidase in this fungus were both greatly increased under degrading conditions for bisphenol A, nonylphenol and two phthalic esters (benzylbutylphthalate and diethylphthalate), all of which are reportedly endocrine disrupting chemicals (EDCs). Furthermore, the estrogenic activities of the EDCs also decreased rapidly during incubation when examined in a two-hybrid yeast system. Finally, kojic acid inhibited the removal of estrogenic activities generated by bisphenol A and nonylphenol, which confirmed that laccase was involved in the degradation of EDCs in T. versicolor.  相似文献   

9.
Two laccase isoenzymes were purified and characterized from the basidiomycete Coriolopsis rigida during transformation of the water-soluble fraction of “alpeorujo” (WSFA), a solid residue derived from the olive oil production containing high levels of toxic compounds. Zymogram assays of laccases secreted by the fungus growing on WSFA and WSFA supplemented with glucose showed two bands with isoelectric points of 3.3 and 3.4. The kinetic studies of the two purified isoenzymes showed similar affinity on 2,6-dimethoxyphenol and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid), used as phenolic and non-phenolic model substrate, respectively. The molecular mass of both proteins was 66 kDa with 9% N-linked carbohydrate. Physico-chemical properties of the purified laccases from media containing WSFA were similar to those obtained from medium with glucose as the main carbon source. In-vitro studies performed with the purified laccases revealed a 42% phenol reduction of WSFA, as well as changes in the molecular mass distribution. These findings indicate that these laccases are involved in the process of transformation, via polymerization by the oxidation of phenolic compounds present in WSFA. A single laccase gene, containing an open reading frame of 1,488 bp, was obtained in PCR amplifications performed with cDNA extracted from mycelia grown on WSFA. The product of the gene shares 90% identity (95% similarity) with a laccase from Trametes trogii and 89% identity (95% similarity) with a laccase from Coriolopsis gallica. This is the first report on purification and molecular characterization of laccases directly involved in the transformation of olive oil residues.  相似文献   

10.
Trametes hirsuta and a purified laccase from this organism were able to degrade triarylmethane, indigoid, azo, and anthraquinonic dyes. Initial decolorization velocities depended on the substituents on the phenolic rings of the dyes. Immobilization of the T. hirsuta laccase on alumina enhanced the thermal stabilities of the enzyme and its tolerance against some enzyme inhibitors, such as halides, copper chelators, and dyeing additives. The laccase lost 50% of its activity at 50 mM NaCl while the 50% inhibitory concentration (IC(50)) of the immobilized enzyme was 85 mM. Treatment of dyes with the immobilized laccase reduced their toxicities (based on the oxygen consumption rate of Pseudomonas putida) by up to 80% (anthraquinonic dyes). Textile effluents decolorized with T. hirsuta or the laccase were used for dyeing. Metabolites and/or enzyme protein strongly interacted with the dyeing process indicated by lower staining levels (K/S) values than obtained with a blank using water. However, when the effluents were decolorized with immobilized laccase, they could be used for dyeing and acceptable color differences (DeltaE*) below 1.1 were measured for most dyes.  相似文献   

11.
Alginate beads, polyurethane foam, nylon sponge and stainless steel sponge were tested as carrier materials for the white-rot fungus Trametes hirsuta for laccase production under submerged fermentation conditions. Stainless steel sponge was the best carrier material leading to the highest laccase activities of up to 800 U/l after 8 days of cultivation. These values are higher than those reported to date operating with inert supports and without inducer addition. In a 1-l bioreactor containing T. hirsuta immobilised on stainless steel sponge laccase activities of about 2200 U/l were obtained when the culture medium was supplemented with 1 mM copper sulphate. There were no operational problems with this system during culturing time. The textile dye Indigo Carmine was almost totally degraded in 3 days by T. hirsuta grown in this bioreactor, while Lanaset Marine was degraded in two successive batches, reaching in the first batch a decolourization percentage of about 82% in 15 h and in the second one by 71% in 28 h. Results obtained after inhibition of growth of T. hirsuta by antibiotics indicated that dye decolourization could not exclusively be attributed to laccase activity.  相似文献   

12.
A cDNA encoding a novel laccase from the white-rot fungus Trametes trogii was cloned and expressed in Pichia pastoris. The recombinant protein (Lcc2) exhibited kinetic parameters for both phenolic and non phenolic substrates that were different from the previously described Lcc1, the main laccase isoform expressed by T. trogii; in addition, the pH/activity profiles for phenolic substrates of Lcc2 were shifted upward by 1–1.5 pH units towards neutrality as compared to Lcc1. Comparative modeling of the two laccases (69.2% identity) showed that the overall fold of Lcc2 is very similar to Lcc1 and other laccases. The substrate cavity of Lcc2 contains the Asp residue which is thought to mediate the laccase activity at acidic pHs, whereas two hydrophobic residues (Phe, Ile) on the cavity orifice of Lcc2 replace the two polar residues (Thr, Ser) of Lcc1. These structural differences may be responsible for the unique kinetic performances of Lcc2.  相似文献   

13.
There has been increasing interest in extracellular enzymes from white rot fungi, such as lignin and manganese peroxidases, and laccases, due to their potential to degrade both highly toxic phenolic compounds and lignin. The optimum cultivation conditions for laccase production in semi-solid and liquid medium by Trametes versicolor, Trametes villosa, Lentinula edodes and Botrytis cinerea and the effects of laccase mediator system in E1 effluent were studied. The higher laccase activity (12756 U) was obtained in a liquid culture of T. versicolor in the presence of 1 mM of 2,5-xylidine and 0.4 mM copper salt as inducers. The effluent biotreatments were not efficient in decolorization with any fungal laccases studied. Maximum phenol reduction was approximately 23% in the absence of mediators from T. versicolor. The presence of 1-hydroxybenzotriazole did not increase phenol reduction. However, acetohydroxamic acid, which was not degraded by laccase, acted very efficiently on E1 effluent, reducing 70% and 73% of the total phenol and total organic carbon, respectively. Therefore, acetohydroxamic acid could be applied as a mediator for laccase bioremediation in E1 effluent.  相似文献   

14.
An approach was developed to screening organic compounds for putative activity of redox mediators of oxidoreductases, including laccases and peroxidases, applicable for xenobiotic degradation. The study was carried out with a homogenous laccase preparation from the basidiomycete Trametes hirsuta and horse-radish root peroxidase. Compounds belonging to 1-phenyl-3-methylpyrazolones were selected. Spectroscopic and electrochemical investigation of two of the compounds, sodium 1-phenyl-2,3-dimethyl-4-aminopyrazolon 5n(4)-methanesulfonate (PPNa) and 1-(3'-sulfophenyl)-3-methylpyrazolone (SPP), was performed. Electrochemical oxidation of both PPNa and SPP gave rise to high-potential intermediates capable of oxidizing veratryl alcohol; a lignin-modeling compound. Kinetic indices of these compounds were determined in enzymatic reactions with the presence of laccase. It was shown that enzymatic oxidation of SPP by laccase produced high-potential intermediates capable of oxidizing veratryl alcohol to veratric acid. Veratryl alcohol did not oxidize during enzymatic oxidation of SPP by peroxidase. This points to a difference between the mechanisms of enzymatic oxidation of PPNa and SPP by laccase and peroxidase.  相似文献   

15.
Rate constants and activation parameters have been determined for the internal electron transfer from type 1 (T1) to type 3 (T3) copper ions in laccase from both the fungus Trametes hirsuta and the lacquer tree Rhus vernicifera, using the pulse radiolysis method. The rate constant at 298 K and the enthalpy and entropy of activation were 25 ± 1 s(-1), 39.7 ± 5.0 kJ·mol(-1) and -87 ± 9 J·mol(-1) ·K(-1) for the fungal enzyme and 1.1 ± 0.1 s(-1), 9.8 ± 0.2 kJ·mol(-1) and -211 ± 3 J·mol(-1) ·K(-1) for the tree enzyme. The initial reduction of the T1 site by pulse radiolytically produced radicals was direct in the case of T. hirsuta laccase, but occured indirectly via a disulfide radical in R. vernicifera. The equilibrium constant that characterizes the electron transfer from T1 to T3 copper ions was 0.4 for T. hirsuta laccase and 1.5 for R. vernicifera laccase, leading to full reduction of the T1 site occurring at 2.9 ± 0.2 electron equivalents for T. hirsuta and 4 electron equivalents for R. vernicifera laccase. These results were compared with each other and with those for the same process in other multicopper oxidases, ascorbate oxidase and Streptomyces coelicolor laccase, using available structural information and electron transfer theory.  相似文献   

16.
Trametes sp.AH28—2漆酶同工酶的合成需要铜离子的存在,较高浓度的Cu^2 有利于漆酶合成。在以葡萄糖为碳源补加0.5mmol/L Cu^2 的培养基中生长时,发酵液漆酶活性为44.3u/L,同时补加4.0mmol/L邻甲苯胺时,漆酶酶活提高到71.0u/L;而在补加Cu^2 和邻甲苯胺的纤维二糖培养基中,酶活上升至2584u/L,为葡萄糖培养基的36.4倍。邻甲苯胺和铜离子诱导产生的漆酶同工酶组分,均为漆酶A(LacA)。竞争性RT—PCR分析表明,漆酶A基因(lacA)转录本的累积伴随有发酵液漆酶活性的增加,邻甲苯胺对lacA的调控发生在转录水平。lacA结构基因长2110bp,含有10个内含子;lacA的cDNA序列为1560bp,编码520aa的漆酶蛋白,其氨基酸序列与其它真菌漆酶具有较高的相似性。采用改进的反向PCR技术,扩增得到的lacA 5’-端调控区长1881bp,分析表明,该区域上分布有1个TATA框、7个CAAT框和多个潜在的顺式作用元件序列位点,包括5个MRE元件、9个CreA结合位点、4个XRE元件、2个STRE元件和7个氮因子调控位点等。这些序列位点的存在部分地对应了菌株摇瓶发酵奈件下lacA的表达规律。  相似文献   

17.
Electrochemical studies of a truncated laccase produced in Pichia pastoris   总被引:3,自引:0,他引:3  
The cDNA that encodes an isoform of laccase from Trametes versicolor (LCCI), as well as a truncated version (LCCIa), was subcloned and expressed by using the yeast Pichia pastoris as the heterologous host. The amino acid sequence of LCCIa is identical to that of LCCI except that the final 11 amino acids at the C terminus of LCCI are replaced with a single cysteine residue. This modification was introduced for the purpose of improving the kinetics of electron transfer between an electrode and the copper-containing active site of laccase. The two laccases (LCCI and LCCIa) are compared in terms of their relative activity with two substrates that have different redox potentials. Results from electrochemical studies on solutions containing LCCI and LCCIa indicate that the redox potential of the active site of LCCIa is shifted to more negative values (411 mV versus normal hydrogen electrode voltage) than that found in other fungal laccases. In addition, replacing the 11 codons at the C terminus of the laccase gene with a single cysteine codon (i.e., LCCI-->LCCIa) influences the rate of heterogeneous electron transfer between an electrode and the copper-containing active site (k(het) for LCCIa = 1.3 x 10(-4) cm s(-1)). These results demonstrate for the first time that the rate of electron transfer between an oxidoreductase and an electrode can be enhanced by changes to the primary structure of a protein via site-directed mutagenesis.  相似文献   

18.
C Eggert  U Temp    K E Eriksson 《Applied microbiology》1996,62(4):1151-1158
The white rot fungus Pycnoporus cinnabarinus was characterized with respect to its set of extracellular phenoloxidases. Laccase was produced as the predominant extracellular phenoloxidase in conjunction with low amounts of an unusual peroxidase. Neither lignin peroxidase nor manganese peroxidase was detected. Laccase was produced constitutively during primary metabolism. Addition of the most effective inducer, 2,5-xylidine, enhanced laccase production ninefold without altering the isoenzyme pattern of the enzyme. Laccase purified to apparent homogeneity was a single polypeptide having a molecular mass of approximately 81,000 Da, as determined by calibrated gel filtration chromatography, and a carbohydrate content of 9%. The enzyme displayed an unusual behavior on isoelectric focusing gels; the activity was split into one major band (pI, 3.7) and several minor bands of decreasing intensity which appeared at regular, closely spaced intervals toward the alkaline end of the gel. Repeated electrophoresis of the major band under identical conditions produced the same pattern, suggesting that the laccase was secreted as a single acidic isoform with a pI of about 3.7 and that the multiband pattern was an artifact produced by electrophoresis. This appeared to be confirmed by N-terminal amino acid sequencing of the purified enzyme, which yielded a single sequence for the first 21 residues. Spectroscopic analysis indicated a typical laccase active site in the P. cinnabarinus enzyme since all three typical Cu(II)-type centers were identified. Substrate specificity and inhibitor studies also indicated the enzyme to be a typical fungal laccase. The N-terminal amino acid sequence of the P. cinnabarinus laccase showed close homology to the N-terminal sequences determined for laccases from Trametes versicolor, Coriolus hirsutus, and an unidentified basidiomycete, PM1. The principal features of the P. cinnabarinus enzyme system, a single predominant laccase and a lack of lignin- or manganese-type peroxidase, make this organism an interesting model for further studies of possible alternative pathways of lignin degradation by white rot fungi.  相似文献   

19.
The laccases (EC 1.10.3.2) secreted into solid-state culture by Lentinula edodes were analyzed. The fungus secreted at least two laccases in the solid-state culture. One laccase was purified to a homogeneous preparation using anion-exchange, hydrophobic, and size-exclusion chromatography. SDS-PAGE analysis showed that the purified laccase, Lcc6, was a monomeric protein of 58.5 kDa. The optimum pH for enzyme activity was about 3.5, and the laccase was most active at 40°C. The N-terminal amino acid sequence of Lcc6 did not correspond to the sequence of Lcc1, which was previously purified from L. edodes. Lcc6 had decolorization activity to some chemical dyes.  相似文献   

20.
基于ITS序列的栓菌属部分种的分子分类初步研究   总被引:2,自引:0,他引:2  
栓菌属 Trametes 的一些近缘种宏观和微观形态学非常相近,传统分类学方法难于对其进行准确分类定位。测定了 34 个分类单元的 ITS(包括 5.8SrDNA)序列,并对得到的 43 个分类单元的 ITS 序列进行系统发生分析,构建了聚类分析树状图。该树状图显示,栓菌属类群与其他属类群明显分开,Trametes versicolor 聚类到一个高支持率的独立分支。形态学上定名为 T. hirsuta 和 T. pubescens 物种聚类到同一高支持率的独立分支,试验分析表明这两个种应视为同一物种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号