首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differentiation-arrested lung cell cultures were developed from fetal rats of various gestational ages. In contrast to previously published observations with cultures in a pO2 of approximately 142 mm Hg, cultures developed in a pO2 of approximately 30 mm Hg, close to the normal fetal arterial pO2, have improved plating efficiency and a slightly increased growth rate. They did not, however, show gestation-dependent increases of choline incorporation into phospholipids, nor did immature lung cell cultures respond to dexamethasone or triiodothyronine, singly or in combination, by increased choline incorporation into saturated lecithin. The incorporation of choline and glycerol into lipids suggested a mature rate of lipid synthesis by immature cultures at a pO2 approximately 30 mm Hg, despite preservation of an immature morphology. Electron microscope observations revealed no gross differences between immature cultures developed at either pO2. The cellular mechanisms underlying these differences are unclear but suggest that oxygen tension may significantly influence results obtained with in vitro studies of lipid synthesis by immature lung.  相似文献   

2.
Summary A modified continuous-flow culture system (CFCS) was developed to maintain large explants of periodontium from adult mouse in organ culture. The culture medium was stored in a reservoir outside of the incubator, pumped via polyvinyl tubing into small glass culture chambers that were placed in the oxygenator and then collected in a waste flask. Medium was analyzed for pO2, pCO2 and pH during the culture period. Three-molar and singlemolar explants of periodontium were maintained for 48 hr in the CFCS at two different pO2 ranges: 100 to 120 mm Hg and 400 to 420 mm Hg. [3H]Proline was added 24 hr prior to sacrifice. Light-microscope morphological and radioautographic observations suggested that cell viability and incorporation of [3H]proline, probably into newly synthesized protein, increased with an increase in pO2 and was related to a pO2 gradient extending from the periphery to the center of the explants.  相似文献   

3.
The glucose metabolism and the response of phosphofructokinase activity to oxygen were investigated using glucose-limited chemostat cultures ofE. coli K-12. With a dilution rate of 0.2 hr–1 and a glucose input concentration of 0.83 g/litre, 10 steady states were obtained ranging from 320 to 0 mm HgO2. Dissolved oxygen reached zero level at a pO2 of 25.8 mm Hg. The specific phosphofructokinase activity was constant above 28 mm Hg O2 and increased linearly at lower pO2 levels until it reached highest activity at 0 mm Hg O2. Cell dry weight also started to decrease linearly from 28 to 5.9 mm Hg O2, and fell sharply thereafter. Acid production rate did not start before pO2 reached 25.6 mm Hg, increased progressively with an additional sharp increase below 5.9 mm Hg O2. The main endproducts formed were acetic acid and ethanol with lactic acid appearing below 5.9 mm Hg O2. The results suggest an effect of oxygen on phosphofructokinase synthesis rather than an ATP inhibition of the enzyme.This work was supported by a grant from the Australian Research Grant Commission.  相似文献   

4.
Summary Primary cell cultures from neonatal rat ventricles were continuously exposed for 7 days in a modified roller apparatus to defined pericellular oxygen tension varying from 0.6 to 600 mm Hg. 5-Fluorodeoxyuridine was added to the medium to prevent over-growth of muscle cells by nonmuscle cells. A pericellular pO2 of 600 mm Hg was lethal. The range of about 15 to 150 mm Hg was favorable, as indicated by increases in total and muscle-characteristic proteins. Between the 2nd and 8th day of cultivation at a pO2 of 38 mm Hg, myosin content per cell increased 3.2-fold and creatine kinase activity 2.5-fold. At 0.6 mm Hg, myosin content increased only 1.3-fold and there was no increase in creatine kinase activity. The rate of myosin synthesis was diminished at this low pO2. ATP level and beating rate at 0.6 mm Hg did not differ from values at 38 mm Hg. The isoenzyme pattern of lactate dehydrogenase remained unchanged during cultivation at 38 mm Hg, whereas at 0.6 mm Hg it shifted towards an M-type pattern. These experiments suggest that neonatal rat heart cells maintained in vitro can adapt themselves to low oxygen tensions.  相似文献   

5.
A 3-liter culture vessel has been developed for the growth of animal cells in suspension at controlled pH and dissolved oxygen partial pressure (pO2). The culture technique allows metabolically produced CO2 to be measured; provision can be made to control the dissolved CO2 partial pressure. In cultures containing a low serum concentration, gas sparging to control pO2 was found to cause cell damage. This could be prevented by increasing the serum concentration to 10%, or by adding 0.02% of the surface-active polymer Pluronic F68. The growth of mouse LS cells in batch culture without pO2 control was found to be limited by the availability of oxygen. Maximum viable cell populations were obtained when dissolved pO2 was controlled at values within the range 40–100 mm Hg.  相似文献   

6.
Summary Human fetal lung at 16–19 weeks gestation has a partially differentiated epithelium, and in organ culture, distal airsacs dilate and the epithelium autodifferentiates to type I and II pneumatocytes, processes regulated by endogenous prostaglandin PGE2. Human fetal trachea, at the same gestation, has a terminally differentiated mucociliary epithelium but after 4–6 d in organ culture, develops squamous metaplasia. Tracheal cultures restricted to 3 d have normal phase-contrast and light microscopy appearances and immunohistochemical reactivities (epithelium: cytokeratin 7,8,18; glutathione S-transferase pi-isozyme; epithelial membrane antigen and mesenchyme; desmin; vimentin). In human fetal trachea organ cultures, the predominant prostaglandins released are 6-keto-PGF, PGF, and PGE2, a pattern similar to that previously described for human adult trachea and lung. In fetal lung cultures, 13,14-dihydro-15-keto-PGF is the major prostaglandin released with lesser amounts of 13,14-dihydro-15-keto-PFG, PGF, PGE2, and 6-keto-PGF. Human fetal lungin vitro has the competence to self-differentiate, as early as 12 weeks gestation and presence of high levels in fetal lung of the inactive metabolite 13,14-dihydro-15-keto-PGE2 relative to PGE2 suggests that active prostaglandin catabolism may be one of the mechanisms to retard this stage of maturationin vivo by limiting PGE2 availability. Surprisingly, the profile of prostaglandins released from fetal lung organ culture does not change to that of a mature lung with terminal differentiation of the epithelium, and this may indicate differences in the expression of key prostaglandin-metabolizing enzymes in developing human fetal lung in culture and within utero ontogeny.  相似文献   

7.
Using primary hepatocytes in culture, various 2-acetamido-2-deoxy-D-glucose (GlcNAc) analogs were examined for their effects on the incorporation of D-[3H]glucosamine, [35S]sulfate, and L-[14C]leucine into cellular glycoconjugates. A series of acetylated GlcNAc analogs, namely methyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-α-(3) and β-D-glucopyranoside (4) and 2-acetamido-1,3,4,6-tetra-O-acetyl-2-deoxy-D-glucopyranose (5), exhibited a concentration-dependent reduction of D-[3H]glucosamine, but not of [35S]sulfate incorporation into isolated glycosaminoglycans (GAGs), without affecting L-[14C]leucine incorporation into total protein synthesis. These results suggest that analogs 3–5 exhibit an inhibitory effect on D-[3H]glucosamine incorporation into isolated GAGs by diluting the specific activity of cellular D-[3H]glucosamine and by competing for the same metabolic pathways. In the case of the corresponding series of 4-deoxy-GlcNAc analogs, namely methyl 2-acetamido-3,6-di-O-acetyl-2,4-dideoxy-α-(6) and β-D-xylo-hexopyranoside (7) and 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-D-xylo-hexopyranose (8), compound 8 at 1.0 mM exhibited the greatest reduction of D-[3H]glucosamine and [35S]sulfate incorporation into isolated GAGs, namely to ∼7% of controls, and a moderate inhibition of total protein synthesis, namely to 60% of controls. Exogenous uridine was able to restore the inhibition of total protein synthesis by compound 8 at 1.0 mM. Isolated GAGs from cultures treated with compound 8 were shown to be smaller in size (∼40 kDa) than for control cultures (∼77 kDa). These results suggest that the inhibitory effects of compound 8 on cellular GAG synthesis may be mediated by the incorporation of a 4-deoxy moiety into GAGs resulting in premature chain termination and/or by its serving as an enzymatic inhibitor of the normal sugar metabolites. The inhibition of total protein synthesis from cultures treated with compound 8 suggests a uridine trapping mechanism which would result in the depletion of UTP pools and cause the inhibition of total protein synthesis. A 1-deoxy-GlcNAc analog, namely 2-acetamido-3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-glucitol (9), also exhibited a reduction in both D -[3H]glucosamine and [35S]sulfate incorporation into isolated GAGs by 19 and 57%, of the control cells, respectively, at 1.0 mM without affecting total protein synthesis. The inability of compound 9 to form a UDP-sugar and, hence, be incorporated into GAGs presents another metabolic route for the inhibition of cellular GAG synthesis. Potential metabolic routes for each analog's effects are presented.  相似文献   

8.
Choline is a necessary substrate of the lipid membrane and for acetylcholine synthesis. Accumulating evidence indicates that besides being a structural component, choline is also a functional modulator of the membrane. It has been shown to be a muscarinic acetylcholine receptor (mAChR) agonist and can induce a novel K+ current in cardiac cells. However, the potential role of choline in modulating cardiac functions remained unstudied despite that mAChRs are known to be important in regulating heart functions. With microelectrode techniques, we found that choline produced concentration-dependent (0.1∼10 mm) decreases in sinus rhythm and action potential duration in isolated guinea pig atria. The effects were reversed by 2 nm 4DAMP (an M3-selective antagonist). Whole-cell patch-clamp recordings in dispersed myocytes from guinea pig and canine atria revealed that choline is able to induce a K+ current with delayed rectifying properties. The choline-induced current was suppressed by low concentrations of 4DAMP (2∼10 nm). Antagonists toward other subtypes (M1, M2 or M4) all failed to alter the current. The affinity of choline (K d ) at mAChRs derived from displacement binding of [3H]-NMS in the homogenates from dog atria was 0.9 mm, consistent with the concentration needed for the current induction and for the HR and APD modulation. Our data indicate that choline modulates the cellular electrical properties of the hearts, likely by activating a K+ current via stimulation of M3 receptors. Received: 1 December 1998/Revised: 12 February 1999  相似文献   

9.
Single anion channels reconstituted from cardiac mitoplasts   总被引:4,自引:0,他引:4  
Ion channels from sheep cardiac mitoplast (inverted inner mitochondrial membrane vesicle) preparations were incorporated into voltage-clamped planar lipid bilayers. The appearance of anion rather than cation channels could be promoted by exposing the bilayers to osmotic gradients formed by Cl salts of large, relatively imperment, cations at a pH of 8.8. Two distinct activities were identified. These comprised a multisubstate anion channel of intermediate conductance (∼60 pS in 300vs. 50mm choline Cl, ∼100 pS in symmetric 150mm KCl), and a lower-conductance anion channel (∼25 or ∼50 pS in similar conditions), which only displayed two well-defined substates, at ∼25 and ∼50% of the fully open state. The larger channels were not simple multiples of the lower-conductance channels, but both discriminated poorly, and to a similar extent, between anions and cations (PCl /Pcholine + ∼12, PCl /PK +∼8). The lower-conductance channel was only minimally selective between different anions (PNO 3 (1.0)=PCl >PBr >PI >PSCN (0.8)), and its conductance failed to saturate even in high (>1.0 M) activities of KCl. The channels were not obviously voltage dependent, and they were unaffected by 0.5 mM SITS, H2O2, propranolol, quinine or amitriptyline, or by 2 mM ATP, or by variations in pH (5.5–8.8). Ca2+ and Mg2+ did not alter single channel activity, but did modify single current amplitudes in the lower-conductance channel. This effect, together with voltage-dependent substate behavior, is described in the following paper.  相似文献   

10.
Left lung homotransplantation was performed in a 31-year-old man in terminal irreversible respiratory failure due to advanced silicosis. Within 10 minutes of completion of transplantation, arterial pO2 rose from 52 to 211 mm. Hg, pCO2 dropped from 90 to 43 mm. Hg, and pH rose from 7.15 to 7.42. On assisted ventilation, arterial O2 tension was maintained within normal limits for the first four days. Thereafter, arterio-alveolar difference for O2 increased to 300 mm. and that for CO2 to 25 mm. Xenon-133 ventilation perfusion ratios confirmed differences between the two lungs. Terminally, bronchopneumonia and hypoxemia were present. Surfactant content of the lung was within normal limits. Postmortem examination revealed bronchopneumonia, bronchial infarction, lymphatic engorgement and mild rejection. Future efforts should emphasize selection of non-infected donors, minimal reliance on steroids for immunosuppression, cardiopulmonary bypass during transplantation, and more definite criteria for rejection.  相似文献   

11.
In an oxystat, the synthesis of the fermentation products formate, acetate, ethanol, lactate, and succinate of Escherichia coli was studied as a function of the O2 tension (pO2) in the medium. The pO2 values that gave rise to half-maximal synthesis of the products (pO0.5) were 0.2–0.4 mbar for ethanol, acetate, and succinate, and 1 mbar for formate. The pO0.5 for the expression of the adhE gene encoding alcohol dehydrogenase was approximately 0.8 mbar. Thus, the pO2 for the onset of fermentation was distinctly lower than that for anaerobic respiration (pO0.5≤ 5 mbar), which was determined earlier. An essential role for quinol oxidase bd in microaerobic growth was demonstrated. A mutant deficient for quinol oxidase bd produced lactate as a fermentation product during growth at microoxic conditions (approximately 10 mbar O2), in contrast to the wild-type or a quinol-oxidase-bo-deficient strain. In the presence of nitrate, the amount of lactate was largely decreased. Therefore, under microoxic conditions, the pO2 appears to be too high for (mixed acid) fermentation to function and too low for aerobic respiration by quinol oxidase bo. Received: 7 February 1997 / Accepted: 2 May 1997  相似文献   

12.
Pre-type II alveolar cells isolated from the fetal rabbit lung on the 24th gestational day have been maintained in vitro for 14 days in a chemically defined medium supplemented with hormone-stripped serum. These cells replicate in culture. Measurement of the incorporation of [14C]choline into cellular disaturated phospholipid indicated that those cells grown in vitro under standard conditions for 8 days (pre-confluent) incorporate the radioactive precursor at a similar rate to cells maintained for 14 days (post-confluent). Both dexamethasone and serum-free medium conditioned by monolayer cultures of fetal rabbit lung fibroblasts stimulated [14C]choline incorporation into disaturated phosphatidylcholine (PC) by the pre- and post-confluent cultures after 24 or 48 h of exposure: the conditioned medium was more effective than the steroid. These treatments had little effect on choline incorporation into disaturated phosphatidylcholine of preconfluent cells during the first 12 h. A marked response occurred by 24 h after which the labelling of disaturated phosphatidylcholine plateaued. In contrast, with post-confluent cells labelling of disaturated PC increased in a more linear fashion and only plateaued after 72 h. Determination of the ratio of incorporation of [14C]choline into disaturated versus unsaturated phospholipid indicated that serum-free medium conditioned by monolayer cultures of fetal lung fibroblasts specifically increased the level of radioactive precursor in the disaturated phospholipid in both the pre- and post-confluent cell monolayers.  相似文献   

13.
The effect of long-term (7 day) anaemia on catecholamine release was examined in rainbow trout (Oncorhynchus mykiss) in vivo during acute exposure to hypoxia and in situ using a perfused post-cardinal vein preparation. The first goal was to distinguish among reductions in blood O2 partial pressure, O2 concentration and haemoglobin percentage saturation as potential stimuli for, or correlates of, catecholamine secretion during hypoxia. The second goal was to elucidate the role of these factors in promoting enhanced chromaffin cell responsiveness in trout subjected to chronic hypoxia (Montpetit and Perry 1998). Anaemic fish (haematocrit lowered from 28.4±2.4% to 11.9±1.6%) displayed a marked reduction in haemoglobin-O2 binding affinity [P 50 (P aO2 at 50% Hb-O2 saturation) was increased from 14.7 mm Hg to 24.3 mm Hg]. Upon exposure to hypoxia, the anaemic fish released catecholamines into their circulation at higher values of arterial O2 partial pressure (∼52 mm Hg versus ∼18 mm Hg) and haemoglobin O2 saturation (<70% versus <55%) than did control fish. In addition, anaemic fish achieved significantly greater circulating levels of total catecholamines (noradrenaline plus adrenaline) during acute hypoxia (294.8±67.3 versus 107.0±35.6 nmol l−1). These results do not support the view that catecholamine release is triggered by a reduction in haemoglobin O2 saturation or arterial PO2, per se. Nor are they consistent with the idea that catecholamine release occurs at a threshold value of arterial PO2 corresponding to a critical reduction in blood O2 concentration. The effects of the non-selective cholinergic receptor carbachol on catecholamine secretion from chromaffin tissue were assessed using perfused posterior cardinal vein preparations derived from control or anaemic fish. For adrenaline secretion, there was no statistically significant change in the ED50 (dose eliciting 50% response). For noradrenaline secretion however, preparations originating from anaemic fish displayed an enhanced responsiveness to carbachol as indicated by a significant 4.5-fold reduction in the carbachol ED50 value from 2.53 × 10−6 mol kg−1 to 5.67 × 10−7 mol kg−1. These results demonstrate that anaemia-induced hypoxaemia, in the absence of any lowering of PO2, is able to modulate the responsiveness of chromaffin cells to cholinergic stimulation. Accepted: 21 April 1999  相似文献   

14.
This study focuses on the effect of the initial quaternary structure of bovine hemoglobin (Hb) on the physical properties of glutaraldehyde polymerized Hb (PolyHb) solutions. Tense (T) state PolyHb was synthesized by maintaining the pO2 of Hb before and after polymerization at 0 mm Hg. In contrast, relaxed (R) state PolyHb was generated by maintaining the pO2 of Hb before and after polymerization to >749 mm Hg. PolyHb solutions were characterized by measuring the pO2, methemoglobin (metHb) level, molecular weight distribution, O2 affinity and cooperativity coefficient. The metHb level of all PolyHb solutions was low (<2%). Analysis of the molecular weight distribution of PolyHb solutions indicates that in general, the molecular weight of PolyHb solutions increased with increasing cross‐link density. T‐state PolyHb solutions exhibited lower O2 affinity compared to unmodified Hb, whereas R‐state PolyHb solutions exhibited higher O2 affinity compared to unmodified Hb. In addition, the polymerization reaction resulted in a significant decrease in cooperativity that was more pronounced at higher cross‐link densities. All of these results were explained in terms of the quaternary structure of Hb. Taken together, our results yield more insight into the importance Hb's quaternary structure plays in defining the physical properties of glutaraldehyde PolyHb solutions. This information will be useful in designing optimized glutaraldehyde PolyHb oxygen carriers for various applications in transfusion medicine. © 2009 American Institute of Chemical Engineers Biotechnol. Prog. 2009  相似文献   

15.
We used two approaches to characterize the lateral mobility of phosphatidylinositol 4,5-bisphosphate (PIP2) in the plasmalemma of baby hamster kidney and Chinese hamster ovary fibroblasts. First, nitrobenzoxadiazole-labeled C6-phosphatidylcholine and C16-PIP2 were incorporated into plasma membrane “lawns” (∼20 × 30 μm) from these cells and into the outer monolayer of intact cells. Diffusion coefficients determined by fluorescence recovery after photobleaching were similar for the two lipids and were higher in lawns, ∼0.3 μm2/s, than on the cell surface, ∼0.1 μm2/s. For membrane lawns, the fractional recoveries (75–90%) were close to those expected from the fraction of total membrane bleached, and labeling by the probes was several times greater than for intact cells. Second, we analyzed cells expressing M1 muscarinic receptors and green fluorescent protein fused with PIP2-binding pleckstrin-homology domains, Tubby domains or diacylglycerol (DAG)-binding C1 domains. On-cell gigaseal patches were formed with pipette tips >5 μm in diameter. When the agonist carbachol (0.3 mm) was applied either within or outside of the pipette, lipid signals crossed the pipette barrier rapidly in both directions and membrane blebbing occurred on both membrane sides. Accurate simulations of lipid gradients required diffusion coefficients >1 μm2/s. Exogenous DAG also crossed the pipette barrier rapidly. In summary, we found no evidence for restricted diffusion of signaling lipids in these cells. The lower mobility and incorporation of phospholipid at the extracellular leaflet may reflect a more ordered and condensed extracellular monolayer, as expected from previous studies. An erratum to this article can be found at  相似文献   

16.
Summary Culture conditions for maintaining first trimester human placenta in organ culture, which enhance the secretion of human chorionic gonadotropin (hCG), are described. Nutrient medium, oxygen tension and Gelfoam support matrix infuence the synthesis of hCG by these cultures. Placental tissue remained viable for the duration of experiments (12 days) as judged by the incorporation of tritiated thymidine into DNA and the lack of release of incorporated [125Iiododeoxyuridine. Optimal conditions for hCG synthesis in placental organ culture included an atmosphere of 95% air and 5% CO2 (approximately 20% O2), CMRL 1066 medium containing fetal human or bovine serum, insulin, hydrocortisone and retinal acetate. Multiple pieces of placenta could be cultured in the same dish with an additive effect on hCG secretion. The functional responsiveness of these placental cultures was demonstrated by modulation of hCG synthesis with theophylline and 3′5′ dibutyryl cyclic AMP. Presented in part at the meeting of the American Association for Cancer Research, April 1978. This work is being submitted in partial fulfillment of the Ph.D. requirements in the Department of Biology, Catholic University of America.  相似文献   

17.
Summary Aerobic and anaerobic N2-fixing bacteria developed in the rhizosphere of barley seedlings and exhibited N2ase activity when seedlings were grown in sterilized sand-nutrient cultures containing low levels of combined nitrogen. The source of the N2-fixing bacteria appeared to be the seed. Average daily rates up to 0.9 μmoles C2H4 h−1 g−1 dry root tissue were measured, but the intensity of the activity was affected by moisture levels and concentration of combined N in the rhizosphere. Removal and washing of the roots did not remove the activity, and roots remained active even after surface-sterilization. An unidentified aerobic N2-fixing bacterium was isolated from the rhizoplane of active barley roots. Inoculation of barley seedlings with the aerobic N2-fixing bacterium enhanced N2ase activity of excised roots 10-fold, with average rates of 0.9, 1.1 and 1.3 μmoles h−1 g−1 dry root assayed under pO2 of 0.01, 0.02 and 0.04 atm respectively. The aerobic N2-fixing bacterium also exhibited N2ase activity when inoculated into the rhizosphere of oat, rice and wheat seedlings. Microscopic observations of sterilized live and stained barley roots suggest that the aerobic N2-fixing bacterium is an endophyte which infects root tissue and metamorphoses into vesicle-like structures.  相似文献   

18.
Methanogenesis and microbial lipid synthesis in anoxic salt marsh sediments   总被引:1,自引:0,他引:1  
In anoxic salt marsh sediments of Sapelo Island, GA, USA, the vertical distribution of CH4 production was measured in the upper 20 cm of surface sediments in ten locations. In one section of high marsh sediments, the concentration and oxidation of acetate in sediment porewaters and the rate and amount of14C acetate and14CO2 incorporation into cellular lipids of the microbial population were investigated. CH4 production rates ranged from <1 to 493 nM CH4 gram sediment−1 day−1 from intact subcores incubated under nitrogen. Replacement with H2 stimulated the rate of methane release up to nine fold relative to N2 incubations. Rates of lipid synthesis from CO2 averaged 39.2 ×10−2nanomoles lipid carbon cm3 sediment−1 hr−1, suggesting that CO2 may be an important carbon precursor for microbial membrane synthesis in marsh sediments under anoxic conditions. Qualitative measurements of lipid synthesis rates from acetate were found to average 8.7 × 10−2 nanomoles. Phospholipids were the dominant lipids synthesized by both substrates in sediment cores, accounting for an average of 76.6% of all lipid radioactivity. Small amounts of ether lipids indicative of methanogenic bacteria were observed in cores incubated for 7 days, with similar rates of synthesis for both CO2 and acetate. The low rate of ether lipid synthesis suggests that either methanogen lipid biosynthesis is very slow or that methanogens represent a small component of total microbial lipid synthesis in anoxic sediments. present address: The University of Maryland,, Chesapeake Biological Laboratory, Box 38, Solomons, MD 20688, USA  相似文献   

19.
In anoxic salt marsh sediments of Sapelo Island, GA, USA, the vertical distribution of CH4 production was measured in the upper 20 cm of surface sediments in ten locations. In one section of high marsh sediments, the concentration and oxidation of acetate in sediment porewaters and the rate and amount of14C acetate and14CO2 incorporation into cellular lipids of the microbial population were investigated. CH4 production rates ranged from <1 to 493 nM CH4 gram sediment−1 day−1 from intact subcores incubated under nitrogen. Replacement with H2 stimulated the rate of methane release up to nine fold relative to N2 incubations. Rates of lipid synthesis from CO2 averaged 39.2 ×10−2nanomoles lipid carbon cm3 sediment−1 hr−1, suggesting that CO2 may be an important carbon precursor for microbial membrane synthesis in marsh sediments under anoxic conditions. Qualitative measurements of lipid synthesis rates from acetate were found to average 8.7 × 10−2 nanomoles. Phospholipids were the dominant lipids synthesized by both substrates in sediment cores, accounting for an average of 76.6% of all lipid radioactivity. Small amounts of ether lipids indicative of methanogenic bacteria were observed in cores incubated for 7 days, with similar rates of synthesis for both CO2 and acetate. The low rate of ether lipid synthesis suggests that either methanogen lipid biosynthesis is very slow or that methanogens represent a small component of total microbial lipid synthesis in anoxic sediments. present address: The University of Maryland,, Chesapeake Biological Laboratory, Box 38, Solomons, MD 20688, USA  相似文献   

20.
The effect of cortisol on the rate of choline incorporation into tissue phosphatidylcholine was investigated in lung explants from fetal rabbits of 19-28 days gestational age. The explants were incubated in medium with or without fetal calf serum for up to 7 days. When lung tissues were incubated in serum-free medium, a stimulatory effect of cortisol on tissue phosphatidylcholine synthesis was found in explants from 21-, 24-, 26- and 28-day fetal rabbits; a stimulatory effect of cortisol was observed in 19-day fetal lung explants only if fetal calf serum was present in the culture medium. To assess directly the effect of cortisol on the synthesis of lamellar body phosphatidylcholine, choline incorporation into phosphatidylcholine associated with a purified lamellar body fraction isolated from lung explants of 21- and 28-day fetal rabbits was also investigated. Cortisol caused a marked stimulation of synthesis and accumulation of lamellar body phosphatidylcholine in lung explants from both 21- and 28-day fetal rabbits. The magnitude of the stimulatory effect of cortisol on the rate of synthesis of lamellar body phosphatidylcholine was always greater than the effect of cortisol on the rate of choline incorporation into lipids of tissue homogenates. The relative rates of synthesis of lamellar body phosphatidylinositol and phosphatidylglycerol were also significantly altered in lung explants from 21- and 28-day fetal rabbits by cortisol treatment. Lamellar bodies that were formed initially in the fetal lung explants were enriched in phosphatidylcholine and phosphatidylinositol and had a relatively low phosphatidylglycerol content. With cortisol treatment there was a decrease in the relative rate of synthesis of lamellar body phosphatidylinositol and an increase in the relative rate of synthesis of phosphatidylglycerol. The stimulatory effect of cortisol on the synthesis of lamellar body phosphatidylcholine was observed at an earlier time-point of incubation than was the effect of cortisol on the relative rates of synthesis of lamellar body phosphatidylinositol and phosphatidylglycerol. The temporal sequence of the cortisol-induced changes in the synthesis of lamellar body glycerophospholipids, therefore, reflects that which occurs with maturation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号