首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The state and reactivity of tryptophyl residues in two proteolytic enzymes from Sorangium sp. were investigated by means of the following methods: spectrophotometric oxidation of tryptophans with N-bromosuccinimide, 2-hydroxy-5-nitrobenzyl bromide, and H2O2 in dioxane, optical rotatory dispersion, ultraviolet difference spectrophotometry, solvent perturbation and viscosity measurements. Out of two tryptophyl residues/molecule of alpha-lytic protease, one appears to be completely buried, while the other seems to be exposed. None of these two residues seem to be responsible for the activity of the enzyme. The beta-lytic protease undergoes an irreversible conformational transition between pH 5.0 and 3.5. Out of total four tryptophyl residues/molecule, only one is fully exposed at neutral pH. The other three are gradually exposed in the pH transition region. The degree of exposure and the dimensions of "cavities" shielding tryptophyl residues were estimated. The tryptophyl residues of of beta-lytic protease do not seem to participate in substrate binding or the active site; they are rather one of the determinants of the conformational state of the enzyme.  相似文献   

8.
9.
Fungal proteolytic enzymes attract the attention of researches due to such features as high diversity, broad substrate specificity, and stability under extreme conditions. Their functional role is also interesting; it includes a number of processes from the hydrolysis of macromolecular substrates under extremely low nitrogen content to initiation and maintenance of pathogenesis. In the present review, the features of the extracellular proteases of xylotrophic basidiomycetes are discussed. This group is important for the functioning of biological communities and participates in the biological destruction of plant debris; moreover, they are widely used as a source of nutrients and medicines. The review stresses the issues of classification of fungal proteases, their biochemical characteristics and physiological role, as well as the regulation of their activity in the course of fungal growth.  相似文献   

10.
ATP-dependent Lon proteases belong to the superfamily of AAA+ proteins. Until recently, the identity of the residues involved in their proteolytic active sites was not elucidated. However, the putative catalytic Ser-Lys dyad was recently suggested through sequence comparison of more than 100 Lon proteases from various sources. The presence of the catalytic dyad was experimentally confirmed by site-directed mutagenesis of the Escherichia coli Lon protease and by determination of the crystal structure of its proteolytic domain. Furthermore, this extensive sequence analysis allowed the definition of two subfamilies of Lon proteases, LonA and LonB, based on the consensus sequences in the active sites of their proteolytic domains. These differences strictly associate with the specific characteristics of their AAA+ modules, as well as with the presence or absence of an N-terminal domain.  相似文献   

11.
The model system for the proton transfer on the amide atom of the substrate leaving group based on the existence of "charge relay system" in the serine type proteases was analysed by the CNDO/2 method. The unfitness of this model to explain the action mechanism of serine proteases was shown. The model system for proton transfer with the water molecule as the intermediate acceptor of the Ser-195 proton was suggested and analysed by the same method. The acylation activation barrier of this system was shown to localize on the stage of synchronous transfer of the Ser-195 alcoholic proton and the water molecule proton hydrogen bound to the His-57 N epsilon 2-atom on the water molecule oxygen atom and the N epsilon 2-atom, respectively. The protonation of substrate in the case of the model system with the water molecule as the intermediate acceptor of proton was demonstrated to begin before the completion of the tetrahedral intermediate substance and the protonated from of the tetrahedral intermediate was shown to form only. A hypothesis considering the role of this water molecule as the nucleophilic reagent on the deacylation stage is presented.  相似文献   

12.
13.
14.
15.
16.
The digestive tract of Tribolium confusum Duv. larvae was studied for proteolytic enzymes properties. The pH optima are determined for the enzymes effect on various substrates. Proteases were partially purified by gel chromatography on Sephadex G = 100 and investigated for thyol compound influence on their activity. The activity of the enzymes is shown to increase considerably with addition of cystein, glutathione, 2-mercaptoethanol. dithiotreitol and EDTA. Dithiotreitol produces the strongest restoring effect and in concentration of 10(-6) M it activates the enzyme almost twice. Storage for 48 h at 4 degrees C induced a 2.5-fold decrease in the proteolytic enzyme activity; SH-groups in the catalytic action of enzymic solutions is shown. The maximum proteolytic activity is found in extracts from 14-day insects.  相似文献   

17.
18.
1. We have investigated the collagenolytic activity of the following serine proteases: proteinase K, subtilisin Novo, Staphylococcal endoproteinase Glu-C, Streptomyces pronases, the trypsins and chymotrypsins from shrimp midgut and bovine pancreas. 2. By assays on both the insoluble 3H-collagen fibrils and the soluble type I collagen, it was demonstrated that the shrimp midgut serine proteases, and less efficiently, the pronases from Streptomyces griseus, could hydrolyze collagen while the other serine proteases tested could not. 3. Our data indicate that the trypsins and chymotrypsins of shrimp (Penaeus monodon) directly and indirectly digest native collagen, and that the indirect pathway probably involves activation of procollagenase in the native collagen by these serine proteases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号