首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Summary The present report describes the immunocytochemical localization of ornithine decarboxylase in the prepubertal rat ovary after administration of human chorionic gonadotropin (HCG). Numerous ornithine decarboxylase immunoreactive cells appeared in the thecal layer as well as in the interstitial gland tissue after treatment with HCG. The granulosa cells, the ovum and the ovarian stroma were devoid of immunoreactive ornithine decarboxylase. In contrast to the ovary of HCG-treated rats, the ovary of prepubertal rats given the vehicle alone contained only a few weakly immunoreactive cells.  相似文献   

2.
Summary Antiserum elicited to ornithine decarboxylase (ODC) purified from murine RAW 264 macrophage-like cells has been employed to localize ODC in cultured murine cells. The antiserum immunoprecipitated 100% of the ODC activity from the cultured cells. The specificity of the antiserum was demonstrated by the immunoprecipitation from 35S-methionine metabolically-labeled cell extracts of a single protein which migrated upon SDS-gel electrophoresis coincident with authentic ODC. Indirect immunofluorescence experiments were performed on paraformaldehyde-fixed RAW 264 cells and JB6 epidermal cells using the rabbit anti-ODC antiserum and FITC-conjugated goat anti-rabbit IgG. Little immunofluorescence was apparent in non-stimulated cells. Intense immunofluorescence was detectable in stimulated cells at times of peak cellular ODC activity. Antigenically-reactive ODC was localized diffusely in the cytoplasm and was absent in the nuclei of RAW 264 cells, whereas in the JB6 cells the immunodetectable enzyme protein was localized in a punctate pattern in both the cytoplasm and nucleoplasm and was absent in the nucleolus. The appearance and disappearance of immunoreactive ODC in both cell types after stimulation was consistent with the alterations in ODC activity.  相似文献   

3.
Previous studies from our laboratory have shown that caerulein, a cholecystokinin analog, can induce pancreatic growth. Because ornithine decarboxylase (ODC) could be involved in this process, it is of interest to localize and estimate ODC immunoreactivity in rat pancreatic acinar cells from control and caerulein-treated animals. This was carried out with the protein A-gold immunocytochemical technique. Rats received either saline (control) or caerulein at a dose of 1 microgram X kg-1 and were sacrificed 8 h after the first injection (control and caerulein group), 4 h after the second caerulein injection (second caerulein group), and 8 h after the third caerulein injection (third caerulein group). ODC immunoreactivity was revealed using a specific antibody. ODC was localized specifically in nuclei and rough endoplasmic reticulum (RER) of the pancreatic acinar cells and the number of gold particles was increased in both of these organelles by caerulein. Peak ODC immunoreactivity was observed in nuclei 4 h after the second caerulein injection, whereas it occurred 8 h after the third peptide injection in the RER. These studies are the first to demonstrate ODC localization in pancreatic acinar cells and show that the enzyme can be induced early upon growth stimulation of the organ by a cholecystokinin analog.  相似文献   

4.
In rat liver, allylisopropylacetamide (AIA) treatment strongly induced (25-fold) the activity of rat hepatic ornithine decarboxylase (ODC). By either the oral or the subcutaneous route, AIA produced a long-lasting induction (30 to 40 hours) of hepatic ODC activity. Three analogs of AIA, propylisopropylacetamide (PIA), allobarbital, and allylbenzene, were active ODC inducers while a fourth, allylacetate, was not. Although induction of hepatic aminolevulinic acid (ALA) synthetase activity and the accumulation of hepatic porphyrins depend on the allyl moiety of AIA, this is not the case with hepatic ODC induction. Allylisopropylacetamide did not elevate serum alanine aminotransferase (SGPT) nor did it cause DNA damage, as measured by the alkaline elution assay. Thus, hepatic cell death is not a likely explanation of AIA's long-lasting induction of ODC. As AIA does not belong to any of the common categories of ODC inducers, it may be the chemical prototype of a new class of hepatic ODC inducers.  相似文献   

5.
Ornithine decarboxylase (ODC) activity was measured in epididymides of 45-day-old rats. Higher ODC activity was detected in the corpus and cauda than in the caput epididymidis. Bilateral castration for 7 days caused epididymal ODC to fall to undetectable values, whereas testosterone restored activity to normal values. The effect of the androgen was significantly inhibited by cyproterone acetate. The caput was more sensitive to the action of testosterone than were the corpus and caudal segments. Unilateral castration for 4 or 8 days did not affect ODC on the control or castrated side, but the activity fell in epididymides of both sides after removal of the remaining testis. These results show that epididymal ODC activity is androgen-dependent.  相似文献   

6.
Ornithine decarboxylase, the rate-limiting enzyme in polyamine synthesis, was significantly induced in female rat liver following oral administration of the pesticide mirex. After dual oral exposure (120 mg/kg of mirex; 21 and 4 hr prior to sacrifice), ornithine decarboxylase activity in rat liver cytosol was 70-fold higher than control values. A single oral dose of mirex (180 mg/kg) induced hepatic ornithine decarboxylase activity 55-fold over controls. After a single oral dose of mirex the maximal induction of ODC activity occurred at 36 hr. Mirex is an unusually potent and long-lasting inducer of rat hepatic ornithine decarboxylase activity.  相似文献   

7.
Ornithine decarboxylase (ODC; EC4.1.1.17), the key enzyme in polyamine biosynthesis, and intracellular polyamines increase rapidly and markedly in tissues and cells that are actively proliferating as well as differentiating and decrease as these processes cease. ODC activity has also been implicated as playing a role in the proliferation and differentiation of cells derived from the developing palate. Ornithine decarboxylase activity was thus quantified and ODC localized in the developing murine palate in vivo. Levels of ODC activity showed little variation during the ontogeny of the palate, averaging 126 pmol CO2/mg protein/hr. When difluoromethylornithine (DFMO), an irreversible inhibitor of ODC activity, was administered to pregnant mice throughout the period of palate development (days 11-14), palatal tissue ODC activity was reduced by 85%. No craniofacial malformations were observed, however. The lack of a teratogenic effect by DFMO treatment could be due to sufficient remaining ODC activity in craniofacial tissue and/or maintenance of intracellular polyamine levels by the activity of a polyamine transport system. The activity of this system was demonstrated by the ability of palatal tissue in vivo to take up radiolabeled putrescine. The presence of a polyamine transport system was previously suggested by the demonstration of such a system in palate mesenchymal cells in vitro. Dramatic temporal and spatial shifts in tissue patterns of immunolocalization for ODC in developing palatal tissue were also seen. Immunostaining for ODC was evenly distributed in oral, nasal, and medial edge palate epithelial cells on day 12 of gestation. The basal aspects of epithelial cells were, however, more intensely stained. Mesenchymal cells exhibited a peri-nuclear immunostaining pattern. On days 12 and 13 of gestation, the staining patterns for ODC in palate epithelial and mesenchymal cells were comparable. On day 14 of gestation, all regions of the palate epithelium, particularly the medial edge epithelia, were immunostained for ODC, whereas the intensity of staining in the mesenchymal cells was significantly reduced. This study represents essential initial observations toward understanding the role that ODC may play in normal craniofacial development.  相似文献   

8.
9.
High titer antiserum to hepatic ornithine decarboxylase was prepared by employing enzyme·monospecific antibody complex as the immunizing antigen. This new antiserum preparation was successfully labeled with 125I and was found to retain its specific immune properties. Iodinated antiserum was used to precipitate thyroid ornithine decarboxylase induced by a mixture of thyroid stimulating hormone and methyl xanthine in rat thyroids in vitro. 125I-labeled antibody incorporation into the enzyme antibody complex after induction in vitro showed an increase which paralleled the increase in enzymatic activity and thus suggested de novo synthesis of thyroid enzyme protein.  相似文献   

10.
11.
Ornithine decarboxylase was purified 175-fold over the crude 100 000 × g supernatant from homogenates of regenerating rat liver. It exhibited a single major band on acrylamide gels and a minor contaminant which may represent partially degraded enzyme. Antibody prepared against this enzyme gave a single precipitin line on Ouchterlony plates. The enzyme was precipitated by the antibody and substantial activity could be recovered from the immune precipitate. Several properties of the enzyme are described including differential effects of mercaptoethanol and dithiothreitol on enzyme activity.  相似文献   

12.
13.
A monoclonal antibody to rat liver ornithine decarboxylase   总被引:5,自引:0,他引:5  
A monoclonal antibody was obtained against rat liver ornithine decarboxylase by using hybridoma technology with a small amount of partially purified enzyme. The antibody, IgG1 of kappa-type, was affinity-purified to homogeneity from culture supernatants of hybridoma cells. While the antibody had no inhibitory effect on ornithine decarboxylase activity when tested alone, it precipitated up to 87 units (60 ng) of the enzyme per microgram in the presence of formalin-fixed Staphylococcus aureus Cowan I bacteria. Immunoadsorption on a column of the monoclonal antibody-Sepharose 4B was shown to be useful for the removal of ornithine decarboxylase from antizyme inhibitor preparations, an essential procedure for the accurate assay of either ornithine decarboxylase-antizyme complex or antizyme inhibitor. It was also shown that antizyme could be affinity-purified by using a column of the monoclonal antibody-Affi-Gel 10 to which ornithine decarboxylase had been bound.  相似文献   

14.
The roles of polyamines in intrauterine growth restriction (IUGR) is studied. The DL-alpha-difluoromethyl ornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC) which is a rate limiting enzyme of polyamine synthesis was administrated to pregnant rats so that we obtained rat fetuses with IUGR. The changes of maternal nutrition, damage of the placenta, and the direct effect of DFMO on the fetus were examined in this IUGR model. Administration of DFMO did not induced changes of maternal nutrition except for triglyceride and the fetal metabolic state. But the placental weight, ODC activity, and DNA in the placenta were decreased significantly. The ODC activity in the total placenta decreased to less than 10% of that of the control. Depression of ODC activity in the placenta may be the major cause of IUGR induced by DFMO administration, and polyamines play important roles to carry pregnancy.  相似文献   

15.
DH23A cells, an α-difluoromethylornithine (DFMO)–resistant variant of rat hepatoma tissue culture cells (HTC), contain high levels of very stable ornithine decarboxylase (ODC). In the absence of DFMO, the high ODC activity results in a large accumulation of endogenous putrescine. Concomitant with the putrescine increase is a period of cytostasis and a subsequent loss of viable cells. In contrast, HTC cells with a moderate polyamine content can be maintained in exponential growth. This suggests that a moderate polyamine concentration is necessary for both optimal cell growth and survival. The cytoxicity observed in the DH23A cells is apparently not due to byproducts of polyamine oxidation or alterations in steady state intracellular pH or free [Ca2+]. It is possible to mimic the effects of high levels of stable ODC by treatment of cells with exogenous putrescine in the presence of DFMO. This suggests that overaccumulation of putrescine is the causative agent in the observed cytotoxicity, although the mechanism is unclear. These data support the hypothesis that downregulation of ODC may be necessary to prevent accumulation of cytotoxic concentrations of the polyamines. © 1994 Wiley-Liss, Inc.  相似文献   

16.
We describe a new technique for cytochemical localization of ornithine decarboxylase by the use of a synthesized conjugate of rhodamine bound to α-difluoromethylornithine a suicidal inhibitor of the enzyme. The labelled inhibitor retained its specificity and irreversibility towards ornithine decarboxylase inhibition. Using this technique we have localized the enzyme in specific regions of the developing rat cerebellum. This novel technique may be generally applicable to other enzymes.  相似文献   

17.
18.
I Matsui  S Otani  S Morisawa 《Life sciences》1979,24(24):2231-2236
The administration of biliverdin (0.1mg/g of body weight) into the peritoneal cavity of rats resulted in the induction of ornithine decarboxylase in the liver. When the temporal relationships between the changes in intracellular adenosine 3', 5'-cyclic monophosphate (cyclic AMP) level, cyclic AMP-dependent protein kinase activity and the induction of ornithine decarboxylase were investigated, the concentration of cyclic AMP increased significantly 2 h after the administration of biliverdin, while cyclic AMP-dependent protein kinase was activated after 2–4 h. The hepatic ornithine decarboxylase activity began to increase 4 h after biliverdin injection. These results suggest that there is some sequential relationship between the increase of cyclic AMP, the activation of cyclic AMP-dependent protein kinase and the induction of ornithine decarboxylase although the direct correlation of these three events remains to be elucidated.  相似文献   

19.
We compared the properties of mammalian arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) in rat liver and brain. Mammalian ADC is thermally unstable and associated with mitochondrial membranes. ADC decarboxylates both arginine (Km = 0.75 mM) and ornithine (Km = 0.25 mM), a reaction not inhibited by the specific ODC inhibitor, difluoromethylomithine. ADC activity is inhibited by Ca2+, Co2+, and polyamines, is present in many organs being highest in aorta and lowest in testis, and is not recognized by a specific monoclonal antibody to ODC. In contrast, ODC is thermally stable, cytosolic, and mitochondrial and is expressed at low levels in most organs except testis. Although ADC and ODC are expressed in cultured rat C6 glioma cells, the patterns of expression during growth and confluence are very different. We conclude that mammalian ADC differs from ADC isoforms expressed in plants, bacteria, or Caenorhabditis elegans and is distinct from ODC. ADC serves to synthesize agmatine in proximity to mitochondria, an organelle also harboring agmatine's degradative enzyme, agmatinase, and a class of imidazoline receptor (I2) to which agmatine binds with high affinity.  相似文献   

20.
Inactivation of rat liver ornithine decarboxylase by incubation with [5-14C]-α-difluoromethylornithine resulted in the covalent binding of radio-activity to the enzyme. The extent of binding correlated with the degree of inactivation and with the amount of enzyme present. The labeled protein eluted as a single peak which coincided exactly with the active enzyme when chromatographed on Sephadex G-200 and ran as a single band on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate at a position corresponding to a M.W. of about 55,000. The stoichiometric binding of [5-14C]-α-difluoromethylornithine therefore provides a convenient method for quantitating ornithine decarboxylase protein and for determining the purity of preparations of the enzyme. Assuming that 1 molecule of the drug is needed to inactivate each sub-unit, it was calculated that after stimulation with thioacetamide ornithine decarboxylase represents about 0.00014% of the liver soluble protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号