首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During Plasmodium falciparum merozoite invasion into human and mouse erythrocytes, a 110-kDa rhoptry protein is secreted from the organelle into the erythrocyte membrane. In the present study our interest was to examine the interaction of rhoptry proteins of P. falciparum with the erythrocyte membrane. It was observed that the complex of rhoptry proteins of 140/130/110 kDa bind directly to a trypsin sensitive site on intact mouse erythrocytes, and not human, saimiri, or other erythrocytes. However, when erythrocytes were disrupted by hypotonic lysis, rhoptry proteins of 140/130/110 kDa were found to bind to membranes and inside-out vesicles prepared from human, mouse, saimiri, rhesus, rat, and rabbit erythrocytes. A binding site on the cytoplasmic face of the erythrocyte membrane suggests that the rhoptry proteins may be translocated across the lipid bilayer during merozoite invasion. Furthermore, pretreatment of human erythrocytes with a specific peptide derived from MSA-1, the major P. falciparum merozoite surface antigen of MW 190,000-200,000, induced binding of the 140/130/110-kDa complex. The rhoptry proteins bound equally to normal human erythrocytes and erythrocytes treated with neuraminidase, trypsin, and chymotrypsin indicating the binding site was independent of glycophorin and other major surface proteins. The rhoptry protein complex also bound specifically to liposomes prepared from different types of phospholipids. Liposomes containing PE effectively block binding of the rhoptry proteins to mouse cells, suggesting that there are two binding sites on the mouse membrane for the 140/130/110-kDa complex, one protein and a second, possibly lipid in nature. The results of this study suggest that the 140/130/110 kDa protein complex may interact directly with sites in the lipid bilayer of the erythrocyte membrane.  相似文献   

2.
J Kochan  M Perkins  J V Ravetch 《Cell》1986,44(5):689-696
Erythrocyte invasion by the malarial merozoite is a receptor-mediated process, an obligatory step in the development of the parasite. The Plasmodium falciparum protein GBP-130, which binds to the erythrocyte receptor glycophorin, is shown here to encode the binding site in a domain composed of a tandemly repeated 50 amino acid sequence. The amino acid sequence of GBP-130, deduced from the cloned and sequenced gene, reveals that the protein contains 11 highly conserved 50 amino acid repeats and a charged N-terminal region of 225 amino acids. Binding studies on recombinant proteins expressing different numbers of repeats suggest that a correlation exists between glycophorin binding and repeat number. Thus, a repeat domain, a common feature of plasmodial antigens, has been shown to have a function independent of the immune system. This conclusion is further supported by the ability of antibodies directed against the repeat sequence to inhibit the in vitro invasion of erythrocytes by merozoites.  相似文献   

3.
Serine repeat antigen-5 (SERA5) is a candidate antigen for inclusion into a malaria subunit vaccine. During merozoite release and reinvasion the 120 kDa SERA5 precursor protein (P120) is processed, and a complex consisting of an N-terminal 47 kDa (P47) and a C-terminal 18kDa (P18) processing product associates with the surface of merozoites. This complex is thought to be involved in merozoite invasion of and/or egress from host erythrocytes. Here we describe the synthesis and immunogenic properties of virosomally formulated synthetic phosphatidylethanolamine (PE)-peptide conjugates, incorporating amino acid sequence stretches from the N-terminus of Plasmodium falciparum SERA5. Choosing an appropriate sequence was crucial for the development of a peptide that elicited high titers of parasite cross-reactive antibodies in mice. Monoclonal antibodies (mAbs) raised against the optimized peptide FB-23 incorporating amino acids 57-94 of SERA5 bound to both P120 and to P47. Western blotting analysis proved for the first time the presence of SERA5 P47 in sporozoites. In immunofluorescence assays, the mAbs stained SERA5 in all its predicted localizations. The virosomal formulation of peptide FB-23 is suitable for use in humans and represents a candidate component for a multi-valent malaria subunit vaccine targeting both sporozoites and blood stage parasites.  相似文献   

4.
Ca(2+)-channel was purified 230-fold from digitonin extracts of the porcine cardiac sarcolemmal membranes by means of a four-step procedure. Two antibodies, a site-directed antibody against the sequence 1691-1707 of the rabbit cardiac alpha 1 subunit (anti-CCP5) and a monoclonal antibody directed to rabbit skeletal muscle alpha 2 delta subunit-complex (MCC-1), effectively immunoprecipitated the 125I-labeled cardiac Ca(2+)-channel complex in 0.2% digitonin. SDS-PAGE analysis of the immunoprecipitates under reducing conditions revealed that the cardiac channel is mainly composed of two large polypeptides of 190 and 150 kDa, and five smaller polypeptides of 60, 55, 35, 30, and 25 kDa. An additional polypeptide of either 79 or 55 kDa is crosslinked with the 190 kDa component to form 250-270 kDa (approximately 270 kDa) to the extent of 15-20% through disulfide bond(s). The 190 kDa component (alpha 1) is responsible for photoaffinity labeling with [3H]diazepine, since minor photolabeled approximately 270 kDa was converged to the major labeled 190 kDa component when electrophoresed under reducing conditions. The 150 kDa component (alpha 2) was derived by reduction of disulfide bonds from another 190 kDa component of glycopolypeptide which was separated from the channel complex in 1% Triton X-100 and capable of binding to WGA-Sepharose. The four smaller components of 60, 35, 30, and 25 kDa were not covalently associated with the large components through disulfide bonds, whereas the 55 kDa polypeptide was suggested to be a mixture of two kinds of peptides with respect to the disulfide bond: one was crosslinked with alpha 1 through disulfide linkage and the other was not covalently associated with any other component.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Plasmodium falciparum merozoites, the extracellular stage of the erythrocytic cycle of the human malarial parasite, specifically invade human E. The major determinant of that specificity is the sialic acid residues of E glycophorin. In the present study we show that the merozoite surface Ag, Pf200 (m.w. 195,000 to 205,000), of two different isolates of P. falciparum, binds to the surface of human E but not E from other species not invaded by P. falciparum. Pf200 does not bind to neuraminidase-treated E, indicating the interaction is dependent on sialic acid residues. Binding is inhibited by soluble glycophorin and selective mAb against the glycosylated domain of glycophorin, but not by a mAb against the peptide domain of glycophorin. mAb.5B1 previously identified as reacting with Pf 200, blocks binding of the protein to the E. Binding between Pf200 and the E is not high affinity, as Pf200 can be released from the surface by 0.25 M NaCl.  相似文献   

6.
The serine repeat antigen (SERA) of Plasmodium falciparum is a blood stage malaria vaccine candidate. It has been shown that 120 kDa SERA was proteolytically processed into N-terminal 47 kDa fragment (P47), central 56 kDa fragment (P56) that was further converted to 50 kDa (P50), and C-terminal 18 kDa fragment (P18). Here, we have examined the processing of SERA and the localization of its processed fragments by using mouse antibodies directed against recombinant proteins corresponding to different domains of SERA. Western blot analysis showed that all the processing events occurred inside parasitized erythrocytes at the stage just prior to the schizont rupture, that P47 was further processed into two 25 kDa fragments and that the two fragments, which were linked to P18 through disulfide bonds, were associated with the merozoite. In contrast, P50 was completely shed into culture medium and absent from the merozoite. This observation was further supported by the results of indirect immunofluorescence assay. These results could account for the findings that antibodies against P47 were inhibitory to the parasite growth in vitro but those against P50 were not. Finally, we demonstrated that the further processing of P47 is allelic type-dependent. The results of the present study would help in vaccine designing based on SERA.  相似文献   

7.
It has been reported that serine repeat antigen (SERA) binds directly to human erythrocyte membranes, inside-out vesicles and intact mouse erythrocytes. Similarly, mAbs specific against SERA are effective in blocking red blood cell (RBC) invasion by P. falciparum merozoites. Furthermore, the N-terminal recombinant SERA fragment inhibits the merozoite invasion of erythrocyte. In this study of 49 non-overlapping 20-residue-long peptides encompassing the whole SERA protein FCR3 strain, seven peptides having high RBC binding activity were found. Six of these peptides (three from the SERA N-terminal domain) are located in conserved regions and show affinity constants between 150 and 1100 nM, Hill coefficients between 1.5 and 3.0 and 30000-120000 binding sites per cell. Some of these peptides inhibited in vitro merozoite invasion of erythrocyte and intra-erythrocytic development. Residues which are critical in the binding to erythrocytes (in bold face), i.e. 6725 (YLKETNNAISFESNSGSLEKK), 6733 (YALGSDIPEKCDTLASNCFLS), 6737 (YDNILVKMFKTNENNDKSELI), 6746 (DQGNCDTSWIFASKYHLETI), 6754 (YKKVQNLCGDDTADHAVNIVG) and 6762 (NEVSERVHVYHILKHIKDGK), were determined by means of competition assays with high-binding peptide glycine analogues. The identification of peptides which bind to erythrocyte membrane is important in understanding the process of RBC invasion by P. falciparum merozoites.  相似文献   

8.
PC12 pheochromocytoma cells and cultures of early postnatal rat cerebellum were labeled with [3H]glucosamine, [3H]fucose, [3H]leucine, [3H]ethanolamine, or sodium [35S]sulfate and treated with a phosphatidylinositol-specific phospholipase C. Enzyme treatment of [3H]glucosamine- or [3H]fucose-labeled PC12 cells led to a 15-fold increase in released glycoproteins. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, most of the released material migrated as a broad band with an apparent molecular size of 32,000 daltons (Da), which was specifically immunoprecipitated by a monoclonal antibody to the Thy-1 glycoprotein. A second glycoprotein, with an apparent molecular size of 158,000 Da, was also released. After treatment with endo-beta-galactosidase, 40-45% of the [3H]glucosamine or [3H]fucose radioactivity in the phospholipase-released glycoproteins was converted to products of disaccharide size, and the molecular size of the 158-kDa glycoprotein decreased to 145 kDa, demonstrating that it contains fucosylated poly-(N-acetyllactosaminyl) oligosaccharides. The phospholipase also released labeled Thy-1 and the 158-kDa glycoprotein from PC12 cells cultured in the presence of [3H]ethanolamine, which specifically labels this component of the phosphatidylinositol membrane-anchoring sequence, while in the lipid-free protein residue of cells not treated with phospholipase, Thy-1 and a doublet at 46/48 kDa were the only labeled proteins. At least eight early postnatal rat brain glycoproteins also appear to be anchored to the membrane by phosphatidylinositol. Sulfated glycoproteins of 155, 132/134, 61, and 21 kDa are the predominant species released by phospholipase, which does not affect a major 44-kDa protein seen in [3H]ethanolamine-labeled brain cultures. The 44-48- and 155/158-kDa proteins may be common to both PC12 cells and brain.  相似文献   

9.
We have studied the biosynthesis of the cation-dependent mannose 6-phosphate receptor in murine BW5147 lymphoma cells and MOPC 315 plasmacytoma cells. The cells were labeled with [35S]methionine or [2-3H]mannose and the receptor immunoprecipitated with an anti-receptor antiserum. The receptor was first detected as a glycoprotein with an apparent molecular mass of 40 kDa. This intermediate was rapidly processed to a mature form which was stable during 22 h of chase. In these cells, the mature receptor has an apparent molecular mass of 43 kDa. The 3-kDa increase occurs as a result of processing of Asn-linked high-mannose oligosaccharides to complex-type units.  相似文献   

10.
Most proteins that coat the surface of the extracellular forms of the human malaria parasite Plasmodium falciparum are attached to the plasma membrane via glycosylphosphatidylinositol (GPI) anchors. These proteins are exposed to neutralizing antibodies, and several are advanced vaccine candidates. To identify the GPI-anchored proteome of P. falciparum we used a combination of proteomic and computational approaches. Focusing on the clinically relevant blood stage of the life cycle, proteomic analysis of proteins labeled with radioactive glucosamine identified GPI anchoring on 11 proteins (merozoite surface protein (MSP)-1, -2, -4, -5, -10, rhoptry-associated membrane antigen, apical sushi protein, Pf92, Pf38, Pf12, and Pf34). These proteins represent approximately 94% of the GPI-anchored schizont/merozoite proteome and constitute by far the largest validated set of GPI-anchored proteins in this organism. Moreover MSP-1 and MSP-2 were present in similar copy number, and we estimated that together these proteins comprise approximately two-thirds of the total membrane-associated surface coat. This is the first time the stoichiometry of MSPs has been examined. We observed that available software performed poorly in predicting GPI anchoring on P. falciparum proteins where such modification had been validated by proteomics. Therefore, we developed a hidden Markov model (GPI-HMM) trained on P. falciparum sequences and used this to rank all proteins encoded in the completed P. falciparum genome according to their likelihood of being GPI-anchored. GPI-HMM predicted GPI modification on all validated proteins, on several known membrane proteins, and on a number of novel, presumably surface, proteins expressed in the blood, insect, and/or pre-erythrocytic stages of the life cycle. Together this work identified 11 and predicted a further 19 GPI-anchored proteins in P. falciparum.  相似文献   

11.
For selection of immunogens capable of inducing high levels of antibodies reactive with the Plasmodium falciparum antigen Pf155/RESA, rabbits were immunized with synthetic peptides corresponding to sequences based on the repeat subunits EENVEHDA and (EENV)2 from the C-terminus of this antigen. The antibodies obtained were analyzed with regard to binding to synthetic peptides in ELISA and to reactivity with parasite antigens by immunofluorescence or immunoblotting. All antisera reacted with both the peptides EENVEHDA and (EENV)2 as well as with Pf155/RESA. Antibody fractions specific for each of the two peptides were prepared by affinity chromatography on insolubilized peptides. Strong reactivity with antigens in the membrane of erythrocytes infected with early stages of the parasite as well as reactivity with Pf155/RESA in immunoblotting correlated with reactivity of antibody with (EENV)2. Antibody preparations reactive with EENVEHDA and depleted of (EENV)2 reactivity showed only a weak reactivity with Pf155/RESA but reacted also with P. falciparum polypeptides of 250, 210, and 88 kDa. In immunofluorescence, these antibodies stained mainly the intraerythrocytic parasite. Both EENVEHDA- and (EENV)2-specific antibodies inhibited merozoite reinvasion in P. falciparum in vitro cultures, the latter antibodies being the most efficient. This study defines the specificity and cross-reactivity with other P. falciparum antigens of antibodies to the C-terminal repeats of Pf155/RESA.  相似文献   

12.
13.
FRTL-5 rat thyroid cells were either surface-labeled with 125I or biosynthetically labeled with [3H]N-acetylglucosamine, solubilized by lithium diiodosalicylate and immunoprecipitated after sequential exposure to bovine thyrotropin and anti-bovine thyrotropin. Autoradiography of polyacrylamide gels run under denaturing conditions and in the presence of a reducing agent revealed two prominent bands with approximate molecular weights of 66-70 kDa and 47 kDa. Immunoprecipitation of the same radiolabeled and solubilized membrane preparations with a Graves' disease IgG having thyroid stimulating but no thyrotropin-binding inhibiting activity revealed only one major band, migrating near the 47 kDa component reactive with thyrotropin. No bands were immunoprecipitated in control incubations using normal human IgG or substituting radiolabeled, solubilized membranes from a rat thyroid cell line with no thyrotropin receptor activity. Thin layer chromatography of Folch extracts of the [3H]-N-acetylglucosamine-labeled immunoprecipitates obtained by either procedure indicated that a specific thyroid ganglioside was coprecipitated with the immunoprecipitated proteins in both cases.  相似文献   

14.
The merozoite, the extracellular form of the erythrocyte stage of the malarial parasite, invades the erythrocyte and develops intracellularly. Cloned hybridoma cell lines secreting monoclonal antibodies directed against the merozoite surface were selected by indirect immunofluorescent assay by using intact isolated merozoites. Monoclonal antibodies to a 200,000 m.w. merozoite surface antigen were selected and were used to characterize this protein and its role in erythrocyte invasion. Immunoelectron microscopy demonstrated that the antigen was located exclusively on the merozoite surface coat, distributed evenly over the entire surface. The 200,000 m.w. protein incorporated [3H]glucosamine, suggesting that it is a glycoprotein and could be purified to homogeneity by using immuno-affinity chromatography. Freshly isolated, invasive merozoites retained the 200,000 m.w. antigen, but the protein was rapidly cleaved to proteins of 90,000 and 50,000 m.w. when the merozoite was extracellular. The 50,000 m.w. fragment was retained the epitope binding to monoclonal antibody 5B1 and were labeled with [3H]glucosamine. Monoclonal antibodies against the 200,000 m.w. antigen partially inhibited merozoite invasion into erythrocytes.  相似文献   

15.
ATP-binding properties of P glycoprotein from multidrug-resistant KB cells   总被引:18,自引:0,他引:18  
The photoaffinity reagent 8-azido-alpha-[32P]ATP was used to label a protein of 170 kDa in membrane vesicle preparations from a highly multidrug-resistant cell line, KB-V1, but not from the drug-sensitive parental cell line KB-3-1. The 170-kDa labeled protein was immunoprecipitated with a monoclonal antibody (MRK-16) to P glycoprotein. Both ATP and GTP inhibited labeling by 8-azido-alpha-[32P]ATP. Labeling of P170 was not inhibited by 5 mM ADP, 5 mM ribose-5-phosphate, or 100 microM vinblastine. These data directly demonstrate that P glycoprotein has a nucleotide-binding site that could supply energy for drug transport.  相似文献   

16.
Thrombospondin, a 450-kDa glycoprotein composed of three disulphide linked chains, is located in human blood platelet alpha-granules and is released from platelets upon stimulation. This glycoprotein is thought to play a major role in platelet aggregation. The aim of this study was to characterize two monoclonal antibodies (P10 and P12) directed against human blood platelet thrombospondin. When the released material obtained after stimulation of platelets with thrombin in the presence of 2 mM calcium was immediately treated with EDTA, labelled with 125I and incubated with monoclonal antibodies P10 and P12, both immunoprecipitated a major labelled protein band with a molecular mass of 160 kDa and a weaker band at 146 kDa, as analysed on reduced dodecyl sulphate/polyacrylamide gels. The major band corresponds in molecular mass to the thrombospondin subunits. If, however, the released material was left in the presence of Ca2+ for 48 h, then the main band was at 130 kDa and in addition one minor protein band (75 kDa) was immunoprecipitated by P10 whereas P12 recognized two minor protein bands (75 and 60 kDa). When P10 and P12 were incubated with 125I-labelled platelet releasates treated for 48 h at 4 degrees C with 10mM EDTA, three major protein bands (160, 146 and 130 kDa) were immunoprecipitated in addition to the minor bands mentioned above. These results indicate that thrombospondin is probably degraded by the endogenous platelet calcium-dependent protease. Investigation of tryptic peptide fragments of thrombospondin isolated by fast protein liquid chromatography showed that 125I-labelled antibody P10 bound to 400-kDa and 120-kDa fragments whereas 125I-labelled P12 only recognized a 400-kDa fragment. Competition studies involving solid-phase antibody binding and double antibody sandwich assays showed that P10 and P12 were directed against different determinants of thrombospondin. Purified thrombospondin, isolated in the presence of calcium, either directly or after treatment with EDTA, haemagglutinated trypsinized, formaldehyde-fixed sheep erythrocytes identically. The haemagglutination activity of EDTA-treated thrombospondin was inhibited by P10 and enhanced by P12. On the other hand, P10 and P12, despite their binding to calcium-treated thrombospondin, had no effect on its haemagglutination activity. Monoclonal antibodies P10 and P12 could be useful tools to investigate the role of thrombospondin in platelet aggregation.  相似文献   

17.
A Balb/c mouse was immunized with chick synaptic plasma membranes and monoclonal antibodies were produced by fusion of spleen cells with NS-1 mouse myeloma cells. One antibody, MAC-L1, immunoprecipitated more than 90% of the [3H]PN200-110-labeled calcium channels but only 20% of the omega -conotoxin receptor solubilized from the chick brain membranes. Thus possibly, a certain portion of the omega -conotoxin receptor in the chick brain is a dihydropyridine-sensitive calcium channel. By the specific immunoprecipitation of 125I-labeled proteins, two large polypeptides of 193kDa and 130kDa under reducing conditions were identified as the major components of the calcium channel.  相似文献   

18.
Apicomplexan parasites are characterised by the presence of specialised organelles, such as rhoptries, located at the apical end of invasive forms that play an important role in invasion of the host cell and formation of the parasitophorous vacuole. In this study, we have characterised a novel Plasmodium falciparum rhoptry protein, Pf34, encoded by a single exon gene located on chromosome 4 and expressed as a 34kDa protein in mature asexual stage parasites. Pf34 is expressed later in the life cycle than the previously described rhoptry protein, Rhoptry Associated Membrane Antigen (RAMA). Orthologues of Pf34 are present in other Plasmodium species and a potential orthologue has also been identified in Toxoplasma gondii. Indirect immunofluorescence assays show that Pf34 is located at the merozoite apex and localises to the rhoptry neck. Pf34, previously demonstrated to be glycosyl-phosphatidyl-inositol (GPI)-anchored [Gilson, P.R., Nebl, T., Vukcevic, D., Moritz, R.L., Sargeant, T., Speed, T.P., Schofield, L., Crabb, B.S. (2006) Identification and stoichiometry of GPI-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Mol. Cell. Proteomics 5, 1286-1299.], is associated with parasite-derived detergent-resistant microdomains (DRMs). Pf34 is carried into the newly invaded ring, consistent with a role for Pf34 in the formation of the parasitophorous vacuole. Pf34 is exposed to the human immune system during infection and is recognised by human immune sera collected from residents of malaria endemic areas of Vietnam and Papua New Guinea.  相似文献   

19.
In order to develop a molecular probe to delineate chemical and biological characteristics of human neuroblastoma cells, a murine monoclonal antibody (Mab 5G3) was produced that is directed to a glycoprotein, preferentially expressed on the surface of such cells. This antibody is of IgG2a isotype, has an association constant of 8 X 10(9) M-1, and reacts preferentially with human neuroblastoma cell lines and fresh frozen tissue sections in enzyme-linked immunosorbent assay and immunoperoxidase assays, respectively. Minimal reactivity is observed with a variety of lymphoblastoid cell lines and normal fetal and adult tissues. Mab 5G3 specifically recognizes a neuroblastoma target glycoprotein antigen of 215 kDa that is derived from a 200-kDa precursor, as evident from pulse-chase biosynthetic studies. Treatment with tunicamycin revealed that both molecules contain N-asparagine-linked oligosaccharides; however, only the 215-kDa species is resistant to treatment with endo-beta-N-acetylglucosaminidase H and sensitive to neuraminidase, indicating that it contains trimmed and terminally sialylated oligosaccharides of the "complex" type. In contrast, the 200-kDa precursor is sensitive to endo-beta-N-acetylglucosaminidase H and resistant to neuraminidase treatment indicating that it contains high-mannose non-processed oligosaccharides. The 215-kDa molecule is sulfated, phosphorylated at serine residues, and expressed on the cell surface. A molecule of 200 kDa is detected by Mab 5G3 in spent culture medium of human neuroblastoma cells which is neither sulfated nor phosphorylated.  相似文献   

20.
Considerable antigenic heterogeneity of Plasmodium falciparum has been demonstrated in natural parasite populations. However, very little is known about the relative virulence, transmission efficiency and prevalence over space and time of parasites expressing different serotypes of variant antigens. The recent application of recombinant DNA techniques to express a wide range of P. falciparum antigens in Escherichia coli has led to a better understanding of the molecular basis of antigenic diversity of a number of parasite proteins including the precursor to the major merozoite surface antigen (PMMSA) and the heat-stable S-antigens. Highly specific reagents such as DNA probes, monoclonal antibodies and polyclonal antisera to either cloned antigens or synthetic peptides have become available for serotypic analysis of natural parasite populations. With these reagents important epidemiological questions can now be asked concerning the population biology of different serotypes of P. falciparum. The use of the polymorphic S-antigen system as a serotypic marker to analyse the transmission dynamics of P. falciparum in Madang, Papua New Guinea (PNG) is discussed. Results of serotyping studies with the S-antigen system highlight the complexities of malaria transmission, which require consideration in the design of malaria vaccine trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号