首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Whole cell 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) receptor (VDR) binding assays, which measure VDR in the presence of the metabolic machinery of the cell, were used in conjunction with a cytosol binding assay for VDR to determine if self-induced metabolism of 1,25-(OH)2D3 limits VDR occupancy, total VDR levels, and target cell responsiveness. Treatment of cells with 0.5 nM 1,25-(OH)2[3H]D3 for 16 h results in up-regulation of total cell VDR from 82 to 170 fmol/mg protein as measured in a cytosol binding assay. Conversely, whole cell binding assays of VDR showed a 1,25-(OH)2D3-mediated apparent down-regulation of VDR from 90 to 40 fmol/mg protein. Scatchard analysis using the cytosol binding assay demonstrated that 1,25-(OH)2D3 treatment increased total cell VDR from 93 to 154 fmol/mg protein. In contrast, Scatchard analysis with the whole cell binding assay demonstrated that 1,25-(OH)2D3 treatment resulted in reduction in total cell VDR from 100 to 64 fmol/mg protein. Initial Kd estimates with the whole cell binding assay suggested that 1,25-(OH)2D3 treatment resulted in a reduction in VDR Kd from 0.6 to 6.2 nM. This apparent reduction in the affinity of VDR for 1,25-(OH)2D3 was due to degradation of free 1,25-(OH)2[3H]D3 which occurred during whole cell saturation assay. Competitive inhibitors of 1,25-(OH)2D3 metabolism were found to reverse the apparent receptor down-regulation observed in whole cell binding assays of treated cells. In addition, the presence of competitive inhibitors amplified responses of cells to 1,25-(OH)2[3H]D3 treatment as measured by an increased occupancy of VDR by 1,25-(OH)2[3H]D3 and increased up-regulation of VDR over that observed without metabolism inhibitors. These data demonstrate that self-induced target tissue deactivation of 1,25-(OH)2D3 regulates 1,25-(OH)2D3 occupancy of VDR and ultimately the biopotency of 1,25-(OH)2D3 in target cells.  相似文献   

10.
11.
Nephrin plays a key role in maintaining the structure of the slit diaphragm in the glomerular filtration barrier. Our previous studies have demonstrated potent renoprotective activity for 1,25-dihydroxyvitamin D (1,25(OH)(2)D(3)). Here we showed that in podocytes 1,25(OH)(2)D(3) markedly stimulated nephrin mRNA and protein expression. ChIP scan of the 6-kb 5' upstream region of the mouse nephrin gene identified several putative vitamin D response elements (VDREs), and EMSA confirmed that the VDRE at -312 (a DR4-type VDRE) could be bound by vitamin D receptor (VDR)/retinoid X receptor. Luciferase reporter assays of the proximal nephrin promoter fragment (-427 to +173) showed strong induction of luciferase activity upon 1,25(OH)(2)D(3) treatment, and the induction was abolished by mutations within -312VDRE. ChIP assays showed that, upon 1,25(OH)(2)D(3) activation, VDR bound to this VDRE leading to recruitment of DRIP205 and RNA polymerase II and histone 4 acetylation. Treatment of mice with a vitamin D analog induced nephrin mRNA and protein in the kidney, accompanied by increased VDR binding to the -312VDRE and histone 4 acetylation. 1,25(OH)(2)D(3) reversed high glucose-induced nephrin reduction in podocytes, and vitamin D analogs prevented nephrin decline in both type 1 and 2 diabetic mice. Together these data demonstrate that 1,25(OH)(2)D(3) stimulates nephrin expression in podocytes by acting on a VDRE in the proximal nephrin promoter. Nephrin up-regulation likely accounts for part of the renoprotective activity of vitamin D.  相似文献   

12.
13.
14.
WEHI-3B D- cells differentiate in response to 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) but not to all-trans-retinoic acid (RA) or other inducing agents. Combinations of RA with 1,25-(OH)2D3 interact to produce synergistic differentiation of WEHI-3B D- cells. To determine factors involved in the synergistic interaction, expression of the 1,25-(OH)2D3 receptor (VDR) and retinoid receptors, RARalpha and RXRalpha, was measured. No VDR was detected in untreated WEHI-3B D- cells; however, RA and 1,25-(OH)2D3 when used as single agents caused a slight induction of the VDR and in combination produced a marked increase in the VDR. In contrast, no changes in RARalpha and RXRalpha were initiated by these compounds. An RAR-selective agonist combined with 1,25-(OH)2D3 produced synergistic differentiation of WEHI-3B D- cells, whereas an RXR-selective agonist did not. To gain information on the role of the VDR in the synergistic interaction, the VDR gene was transferred into WEHI-3B D+ cells, in which no VDR was detected and no synergism was produced. Expression of the VDR conferred differentiation responsiveness to 1,25-(OH)2D3 in WEHI-3B D+ cells. These findings suggest that (a) induction of VDR expression is a key component in the synergistic differentiation induced by 1,25-(OH)2D3 and RA and (b) RAR and not RXR must be activated for enhanced induction of the VDR and for the synergistic differentiation produced by RA and 1, 25-(OH)2D3.  相似文献   

15.
16.
Vitamin D3, an important seco-steroid hormone for the regulation of body calcium homeostasis, promotes immature myeloid precursor cells to differentiate into monocytes/macrophages. Vitamin D receptor (VDR) belongs to a nuclear receptor super-family that mediates the genomic actions of vitamin D3 and regulates gene expression by binding with vitamin D response elements in the promoter region of the cognate gene. Thus by regulating gene expression, VDR plays an important role in modulating cellular events such as differentiation, apoptosis, and growth. Here we report lipopolysaccharide (LPS), a bacterial toxin; decreases VDR protein levels and thus inhibits VDR functions in the human blood monocytic cell line, THP-1. The biologically active form of vitamin D3, 1alpha,25-dihydroxy vitamin D3 [1,25(OH)2D3], induced VDR in THP-1 cells after 24 h treatment, and LPS inhibited 1,25(OH)2D3-mediated VDR induction. However, LPS and 1,25(OH)2D3 both increased VDR mRNA levels in THP-1 cells 20 h after treatment, as observed by real time RT-PCR. Moreover, LPS plus 1,25(OH)2D3 action on VDR mRNA level was additive and synergistic. A time course experiment up to 60 h showed an increase in VDR mRNA that was not preceded with an increase in VDR protein levels. Although the proteasome pathway plays an important role in VDR degradation, the proteasome inhibitor lactacystin had no effect on the LPS-mediated down-regulation of 1,25(OH)2D3 induced VDR levels. Reduced VDR levels by LPS were accompanied by decreased 1,25(OH)2D3/VDR function determined by VDR responsive 24-hydroxylase (CYP24) gene expression. The above results suggest that LPS impairs 1,25(OH)2D3/VDR functions, which may negatively affect the ability of 1,25(OH)2D3 to induce myeloid differentiation into monocytes/macrophages.  相似文献   

17.
18.
In this report, we explore the interaction of the vitamin D receptor (VDR) at regulatory sites within both the Cyp24a1 and the Trpv6 genes using chromatin immunoprecipitation techniques in a mouse model in vivo. We show that exogenous 1,25(OH)(2)D(3) induces rapid VDR and RXR (retinoid X receptor) binding to the Cyp24a1 gene in both the kidney and the intestine and to the Trpv6 gene in the intestine. Separate studies of Trpv6 in vitro suggest that VDR binding occurs directly to VDR response elements located -2 and -4 kb upstream of the TSS. VDR binding is dose-dependent, demonstrating EC(50) values that are comparable with those for the induction of both Cyp24a1 and Trpv6 mRNA. Importantly, interaction of the VDR with these targets results in rapid changes in histone 4 acetylation as well as the recruitment of RNA polymerase II. The presence of both VDR and RNA polymerase II at these sites declines between 3-6 h, whereas the changes observed in acetylation decrease more slowly. Finally, we show that whereas mediator protein 1 is recruited to the Cyp24a1 promoter in the intestine, this coactivator is apparently not required for Trpv6 activation. These studies provide the first evidence for 1,25(OH)(2)D(3)-induced VDR interaction at key target genes in vivo, revealing the consequences of that interaction on the Cyp24a1 and Trpv6 genes.  相似文献   

19.
20.
Vitamin D receptor (VDR) is a nuclear protein which mediates the physiological actions of its hormone ligand, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). While it appears that the receptor-hormone complex regulates the expression of hormone-dependent genes involved in mineral homeostasis, its role in induction of differentiation of leukaemic cells is less clear. We have studied the expression of the VDR gene in several sublines of HL-60 leukaemic cells with varying responsiveness to 1,25(OH)2D3. Sublines which rapidly differentiated to monocytic forms were shown to contain elevated steady-state levels of VDR mRNA within 1 h of exposure to high concentration of 1,25(OH)2D3. This up-regulation of the expression of VDR was not apparent in sublines in which monocytic differentiation occurred after a delay of several days. Beginning at approximately 3 h after exposure to 1,25(OH)2D3 in most cases, there was a gradual decline in VDR mRNA levels. Measurement of steady-state levels of mRNA for c-myc and c-fos showed that in sublines of HL-60 cells which respond rapidly to 1,25(OH)2D3, elevation of VDR mRNA is evident prior to the changes in proto-oncogene expression. These data are consistent with the hypothesis that a change in VDR gene expression is one of the steps that promote monocytic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号