首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron paramagnetic resonance and kinetics experiments have been made to determine the formation, stability, and fate of the natural nitric oxide carrier, dinitrosyl-diglutathionyl-iron complex (DNDGIC), in heterogeneous systems approaching in vivo conditions. Both in human placenta and rat liver homogenates DNDGIC is formed spontaneously from GSH, S-nitroso-glutathione, and trace amounts of ferrous ions. DNDGIC is unstable in homogenates depleted of glutathione S-transferase (GST); an initial phase of rapid decomposition is followed by a slower decay, which is inversely proportional to the concentration. In the crude human placenta homogenate, GSTP1-1, which represents 90% of the cytosolic GST isoenzymes, is the preferential target for DNDGIC. It binds the complex almost stoichiometrically and stabilizes it for several hours (t1/2 = 8 h). In the presence of an excess of DNDGIC, negative cooperativity in GSTP1-1 opposes the complete loss of the usual detoxicating activity of this enzyme. In the rat liver homogenate, multiple endogenous GSTs (mainly Alpha and Mu class isoenzymes) bind the complex quantitatively and stabilize it (t1/2 = 4.5 h); negative cooperativity is also seen for these GSTs. Thus, the entire pool of cytosolic GSTs, with the exception of the Theta GST, represents a target for stoichiometric amounts of DNDGIC and may act as storage proteins for nitric oxide. These results confirm the existence of a cross-link between NO metabolism and the GST superfamily.  相似文献   

2.
The possible nuclear compartmentalization of glutathione S-transferase (GST) isoenzymes has been the subject of contradictory reports. The discovery that the dinitrosyl-diglutathionyl-iron complex binds tightly to Alpha class GSTs in rat hepatocytes and that a significant part of the bound complex is also associated with the nuclear fraction (Pedersen, J. Z., De Maria, F., Turella, P., Federici, G., Mattei, M., Fabrini, R., Dawood, K. F., Massimi, M., Caccuri, A. M., and Ricci, G. (2007) J. Biol. Chem. 282, 6364-6371) prompted us to reconsider the nuclear localization of GSTs in these cells. Surprisingly, we found that a considerable amount of GSTs corresponding to 10% of the cytosolic pool is electrostatically associated with the outer nuclear membrane, and a similar quantity is compartmentalized inside the nucleus. Mainly Alpha class GSTs, in particular GSTA1-1, GSTA2-2, and GSTA3-3, are involved in this double modality of interaction. Confocal microscopy, immunofluorescence experiments, and molecular modeling have been used to detail the electrostatic association in hepatocytes and liposomes. A quantitative analysis of the membrane-bound Alpha GSTs suggests the existence of a multilayer assembly of these enzymes at the outer nuclear envelope that could represent an amazing novelty in cell physiology. The interception of potentially noxious compounds to prevent DNA damage could be the possible physiological role of the perinuclear and intranuclear localization of Alpha GSTs.  相似文献   

3.
Glutathione transferases (GSTs) are protection enzymes capable of conjugating glutathione (GSH) to toxic compounds. During evolution an important catalytic cysteine residue involved in GSH activation was replaced by serine or, more recently, by tyrosine. The utility of these replacements represents an enigma because they yield no improvements in the affinity toward GSH or in its reactivity. Here we show that these changes better protect the cell from nitric oxide (NO) insults. In fact the dinitrosyl·diglutathionyl·iron complex (DNDGIC), which is formed spontaneously when NO enters the cell, is highly toxic when free in solution but completely harmless when bound to GSTs. By examining 42 different GSTs we discovered that only the more recently evolved Tyr-based GSTs display enough affinity for DNDGIC (KD < 10−9 m) to sequester the complex efficiently. Ser-based GSTs and Cys-based GSTs show affinities 102–104 times lower, not sufficient for this purpose. The NO sensitivity of bacteria that express only Cys-based GSTs could be related to the low or null affinity of their GSTs for DNDGIC. GSTs with the highest affinity (Tyr-based GSTs) are also over-represented in the perinuclear region of mammalian cells, possibly for nucleus protection. On the basis of these results we propose that GST evolution in higher organisms could be linked to the defense against NO.  相似文献   

4.
The interaction of dinitrosyl-diglutathionyl-iron complex (DNDGIC), a natural carrier of nitric oxide, with representative members of the human glutathione transferase (GST) superfamily, i.e. GSTA1-1, GSTM2-2, GSTP1-1, and GSTT2-2, has been investigated by means of pre-steady and steady state kinetics, fluorometry, electron paramagnetic resonance, and radiometric experiments. This complex binds with extraordinary affinity to the active site of all these dimeric enzymes; GSTA1-1 shows the strongest interaction (KD congruent with 10-10 m), whereas GSTM2-2 and GSTP1-1 display similar and slightly lower affinities (KD congruent with 10-9 m). Binding of the complex to GSTA1-1 triggers structural intersubunit communication, which lowers the affinity for DNDGIC in the vacant subunit and also causes a drastic loss of enzyme activity. Negative cooperativity is also found in GSTM2-2 and GSTP1-1, but it does not affect the catalytic competence of the second subunit. Stopped-flow and fluorescence data fit well to a common minimal binding mechanism, which includes an initial interaction with GSH and a slower bimolecular interaction of DNDGIC with one high and one low affinity binding site. Interestingly, the Theta class GSTT2-2, close to the ancestral precursor of GSTs, shows very slow binding kinetics and hundred times lowered affinity (KD congruent with 10-7 m), whereas the bacterial GSTB1-1 is not inhibited by DNDGIC. Molecular modeling and EPR data reveal structural details that may explain the observed kinetic data. The optimized interaction with this NO carrier, developed in the more recently evolved GSTs, may be related to the acquired capacity to utilize NO as a signal messenger.  相似文献   

5.
We have recently shown that dinitrosyl diglutathionyl iron complex, a possible in vivo nitric oxide (NO) donor, binds with extraordinary affinity to one of the active sites of human glutathione transferase (GST) P1-1 and triggers negative cooperativity in the neighboring subunit of the dimer. This strong interaction has also been observed in the human Mu, Alpha, and Theta GST classes, suggesting a common mechanism by which GSTs may act as intracellular NO carriers or scavengers. We present here the crystal structure of GST P1-1 in complex with the dinitrosyl diglutathionyl iron ligand at high resolution. In this complex the active site Tyr-7 coordinates to the iron atom through its phenolate group by displacing one of the GSH ligands. The crucial importance of this catalytic residue in binding the nitric oxide donor is demonstrated by site-directed mutagenesis of this residue with His, Cys, or Phe residues. The relative binding affinity for the complex is strongly reduced in all three mutants by about 3 orders of magnitude with respect to the wild type. Electron paramagnetic resonance spectroscopy studies on intact Escherichia coli cells expressing the recombinant GST P1-1 enzyme indicate that bacterial cells, in response to NO treatment, are able to form the dinitrosyl diglutathionyl iron complex using intracellular iron and GSH. We hypothesize the complex is stabilized in vivo through binding to GST P1-1.  相似文献   

6.
Cytosolic glutathione transferases (GSTs) were purified from the rat spleen by S-hexyl-GSH-Sepharose chromatography, and two major forms were identified as GSTs 2-2 and 7-7 (GST P). Besides these forms an acidic form (pI 5.8) was purified by chromatofocusing at pH 7-4 and it accounted for about 1% of the total GST activity bound to S-hexyl-GSH-Sepharose. Two-dimensional gel electrophoresis revealed that it is a homodimer (subunit Mr 26,000 with pI 5.8). Immunoblot analysis demonstrated that it was immunologically related to GSTs 2-2 and 1-1, and its N-terminal amino acid was apparently blocked, similarly to other forms of the class Alpha. This form had a low activity towards cumene hydroperoxide or 4-hydroxynon-2-enal, indicating that this form differed from GSTs 10-10 and 8-8 as well as from GSTs 1-1 and 2-2. These results suggest that it is a new form of GST belonging to the class Alpha.  相似文献   

7.
The cytosolic glutathione transferases (GSTs) with basic pI values have been studied in mouse liver after treatment with 2,3-t-butylhydroxyanisole (BHA), cafestol palmitate (CAF), phenobarbital (PB), 3-methylcholanthrene (3-MC) and trans-stilbene oxide (t-SBO). The cytosolic GST activity was induced by all compounds except for 3-MC. Three forms of GST were isolated by means of affinity chromatography and f.p.l.c. The examination of protein profiles and enzymic activities with specific substrates showed that the three GSTs correspond to those found in control animals, i.e. GSTs MI, MII and MIII. The class Mu GST MIII accounted for the major effect of induction, whereas the class Alpha GST MI and the class Pi GST MII were unchanged or somewhat down-regulated. The greatest induction was obtained with BHA, PB and CAF. The activities of other glutathione-dependent enzymes were also studied. An increase in glutathione reductase and thioltransferase activities was observed after BHA, PB or CAF treatment; glyoxalase I and Se-dependent glutathione peroxidase were depressed in comparison with the control group in all cases studied.  相似文献   

8.
The physiological significance of the selenium-independent glutathione peroxidase (GPx) activity of glutathione S-transferases (GSTs), associated with the major Alpha class isoenzymes hGSTA1-1 and hGSTA2-2, is not known. In the present studies we demonstrate that these isoenzymes show high GPx activity toward phospholipid hydroperoxides (PL-OOH) and they can catalyze GSH-dependent reduction of PL-OOH in situ in biological membranes. A major portion of GPx activity of human liver and testis toward phosphatidylcholine hydroperoxide (PC-OOH) is contributed by the Alpha class GSTs. Overexpression of hGSTA2-2 in K562 cells attenuates lipid peroxidation under normal conditions as well as during the oxidative stress and confers about 1.5-fold resistance to these cells from H(2)O(2) cytotoxicity. Treatment with 30 microm H(2)O(2) for 48 h or 40 microm PC-OOH for 8 h causes apoptosis in control cells, whereas hGSTA2-2-overexpressing cells are protected from apoptosis under these conditions. In control cells, H(2)O(2) treatment causes an early (within 2 h), robust, and persistent (at least 24 h) activation of JNK, whereas in hGSTA2-2-overexpressing cells, only a slight activation of JNK activity is observed at 6 h which declines to basal levels within 24 h. Caspase 3-mediated poly(ADP-ribose) polymerase cleavage is also inhibited in cells overexpressing hGSTA2-2. hGSTA2 transfection does not affect the function of antioxidant enzymes including GPx activity toward H(2)O(2) suggesting that the Alpha class GSTs play an important role in regulation of the intracellular concentrations of the lipid peroxidation products that may be involved in the signaling mechanisms of apoptosis.  相似文献   

9.
Recent work shows that septic or endotoxic shock is associated with lipopolysaccharide and cytokine mixture-induced nitric oxide (NO) synthesis in liver. Here we found that DL-alpha-lipoic acid inhibited but other thiol-containing antioxidants such as glutathione and N-acetylcysteine enhanced lipopolysaccharide and cytokine mixture (referred as LPS/CM)-induced NO synthesis in hepatocytes. The inhibitory action of alpha-lipoic acid on hepatocyte NO synthesis was as potent as that of NG-monomethyl-L-arginine without obvious cytotoxicity. Deletion by diethylmaleate or inhibition by buthionine sulfoximine of intracellular glutathione caused a significant decrease in hepatocyte NO synthesis, implying that increased intracellular reduced glutathione levels could not be the reason for alpha-lipoic acid inhibited NO synthesis. alpha-Lipoic acid inhibition of NO synthesis seems to be from alpha-lipoic acid improved carbohydrate metabolism in hepatocytes. Since alpha-lipoic acid is an essential compound existing naturally in physiological systems, it may serve as both a research and therapeutic agent for sepsis.  相似文献   

10.
Quantification of human hepatic glutathione S-transferases.   总被引:2,自引:0,他引:2       下载免费PDF全文
Human hepatic glutathione S-transferase (GST) subunits were characterized and quantified with the aid of a recently developed h.p.l.c. method. In 20 hepatic tissue specimens the absolute amounts of the basic Class Alpha subunits B1 and B2, the near-neutral Class Mu subunits mu and psi and the acidic subunit pi were determined. The average total amount of GST was 37 micrograms/mg of cytosolic protein, with the Class Alpha GST being the predominant class (84% of total GSTs), and pi as the sole representative of the Class Pi GSTs present in the lowest concentration (4% of total GSTs). Large interindividual differences were observed for all subunits, with variations up to 27-fold, depending on the subunit. For the Class Alpha GST-subunits B1 and B2, a biphasic ratio was observed. The genetic polymorphism of the subunits mu and psi was confirmed by h.p.l.c. analysis, and correlated with the enzymic glutathione conjugation of trans-stilbene oxide and with Western blotting of cytosols, using a monoclonal anti-(Class Mu GST) antibody. Of the 20 livers examined, ten contained only mu, whereas the occurrence of psi alone, and the combination of mu and psi, were found in only one liver each.  相似文献   

11.
Glutathione affinity chromatography and two-dimensional electrophoresis (2-DE) were used to purify glutathione binding proteins from Caenorhabditis elegans. All proteins identified after peptide mass fingerprinting using matrix-assisted laser desorption/ionization-time of flight were found to belong to the glutathione S-transferase (GST) superfamily. From the 26 individual spots identified, 12 different GSTs were isolated. Of these, five were found on the gel only once, whilst the remaining seven were represented by 21 separate spots. Most of the GSTs identified were of the nematode specific class, however, three Alpha class GSTs, a Pi and a Sigma class GST were also isolated.  相似文献   

12.
Rapid kinetic, spectroscopic, and potentiometric studies have been performed on human Theta class glutathione transferase T2-2 to dissect the mechanism of interaction of this enzyme with its natural substrate GSH. Theta class glutathione transferases are considered to be older than Alpha, Pi, and Mu classes in the evolutionary pathway. As in the more recently evolved GSTs, the activation of GSH in the human Theta enzyme proceeds by a forced deprotonation of the sulfhydryl group (pK(a) = 6.1). The thiol proton is released quantitatively in solution, but above pH 6.5, a protein residue acts as an internal base. Unlike Alpha, Mu, and Pi class isoenzymes, the GSH-binding mechanism occurs via a simple bimolecular reaction with k(on) and k(off) values at least hundred times lower (k(on) = (2.7 +/- 0.8) x 10(4) M(-1) s(-1), k(off) = 36 +/- 9 s(-1), at 37 degrees C). Replacement of Arg-107 by alanine, using site-directed mutagenesis, remarkably increases the pK(a) value of the bound GSH and modifies the substrate binding modality. Y107A mutant enzyme displays a mechanism and rate constants for GSH binding approaching those of Alpha, Mu, and Pi isoenzymes. Comparison of available crystallographic data for all these GSTs reveals an unexpected evolutionary trend in terms of flexibility, which provides a basis for understanding our experimental results.  相似文献   

13.
Formation of dinitrosyl iron complexes (DNICs), which can be described by general formula Fe(NO)2(L)2, where L is carbonyl-, nitrosyl- or imino- complexing ligand, was observed in many kinds of living organisms, in a wide spectrum of physiological conditions associated with inflammation, ischemia/reperfusion and cancer. Accumulation of DNICs coincides with intensified production of nitric oxide in macrophages, neurons, endothelial cells, Langerhans' cells and hepatocytes. Low-molecular thiol-containing DNICs (DNIC-(RS)2) show vasodilatory action and they are proposed to play a role of nitric oxide transducers and stabilizers. DNICs have been shown to modulate redox potential of the cell via inhibition of glutathione-dependent enzymes, such as glutathione reductase, S-transferase and peroxidase. Although there is a convincing experimental evidence for their NO and NO+ donating function, the nature of DNICs formed in biological systems, their stability and biological role is still a matter of discussion.  相似文献   

14.
4-Hydroxynonenal (HNE), one of the major end products of lipid peroxidation, has been shown to be involved in signal transduction and available evidence suggests that it can affect cell cycle events in a concentration-dependent manner. Glutathione S-transferases (GSTs) can modulate the intracellular concentrations of HNE by affecting its generation during lipid peroxidation by reducing hydroperoxides and also by converting it into a glutathione conjugate. We have recently demonstrated that overexpression of the Alpha class GSTs in cells leads to lower steady-state levels of HNE, and these cells acquire resistance to apoptosis induced by lipid peroxidation-causing agents such as H(2)O(2), UVA, superoxide anion, and pro-oxidant xenobiotics, suggesting that signaling for apoptosis by these agents is transduced through HNE. Cells with the capacity to exclude HNE from the intracellular environment at a faster rate are relatively more resistant to apoptosis caused by H(2)O(2), UVA, superoxide anion, and pro-oxidant xenobiotics as well as by HNE, suggesting that HNE may be a common denominator in mechanisms of apoptosis caused by oxidative stress. We have also shown that transfection of adherent cells with HNE-metabolizing GSTs leads to transformation of these cells due to depletion of HNE. These recent studies from our laboratories, which strongly suggest that HNE is a key signaling molecule and that GSTs, being determinants of its intracellular concentrations, can regulate stress-mediated signaling, are reviewed in this article.  相似文献   

15.
G Stenberg  P G Board  B Mannervik 《FEBS letters》1991,293(1-2):153-155
Human class Alpha glutathione transferase (GST) A1-1 has been subjected to site-directed mutagenesis of a Tyr residue conserved in all classes of cytosolic GSTs. The change of Tyr8----Phe lowers the specific activities with three substrates to 2-8% of the values for the wild-type enzyme. The changes in the kinetic parameters kcat/KM, Vmax and S0.5 show that the decreased activities are partly due to a reduced affinity for glutathione. The effect is reflected in lowered kcat values, suggesting that the hydroxyl group of Tyr8 is involved in the activation of glutathione. The proposal of such a role for the Tyr residue has support from the 3D structure of a pig lung class Pi GST [Reinemer et al. (1991) EMBO J. 10, 1997-2005]. Thus, Tyr8 appears to be the first active site residue established as participating in the chemical mechanism of a GST.  相似文献   

16.
The Zeta class of glutathione transferases (GSTs) has only recently been discovered and hence has been poorly characterized. Here we investigate the substrate binding and kinetic mechanisms of the human Zeta class GSTZ1c-1c by means of pre-steady state and steady-state experiments and site-directed mutagenesis. Binding of GSH occurs at a very low rate compared with that observed for the more recently evolved GSTs (Alpha, Mu, and Pi classes). Moreover, the single step binding mechanism observed in this enzyme is reminiscent of that found for the Theta class enzyme, whereas the Alpha, Mu, and Pi classes have adopted a multistep binding mechanism. Replacement of Cys16 with Ala increases the rate of GSH release from the active site causing a 10-fold decrease of affinity toward GSH. Cys16 also plays a crucial role in co-substrate binding; the mutant enzyme is unable to bind the carcinogenic substrate dichloroacetic acid in the absence of GSH. However, both substrate binding and GSH activation are not rate-limiting in catalysis. A peculiarity of the hGSTZ1c-1c is the half-site activation of bound GSH. This suggests a primitive monomer-monomer interaction that, in the recently diverged GSTP1-1, gives rise to a sophisticated cooperative mechanism that preserves the catalytic efficiency of this GST under stress conditions.  相似文献   

17.
18.
The ability of naphthalene 1,2-oxide to diffuse across intact cellular membranes, the subsequent biotransformation of this epoxide and its potential to produce losses in cellular viability have been examined in incubations of isolated hepatocytes. Addition of 1R,2S- or 1S,2R-naphthalene oxide enantiomers (15, 30 and 60 microM) to isolated hepatocytes resulted in a rapid depletion of intracellular glutathione. Depletion of glutathione was concentration dependent and maximal at 5-15 min. Addition of either of the enantiomeric oxides at 60 microM resulted in the loss of more than 20 nmol glutathione/10(6) cells (1 ml cells); thus more than a third of the added epoxide was available for conjugation with intracellular glutathione. The time course and concentration dependence of glutathione depletion corresponded to the rapid, concentration-dependent formation of naphthalene oxide glutathione conjugates. The levels of glutathione adduct were highest 1 min after addition of naphthalene oxide and declined to 25% of this level after 30 min. Loss of glutathione conjugates from incubations correlated with the formation of N-acetylcysteine adducts. In contrast, the levels of glutathione adducts added exogenously to hepatocytes were relatively stable over a 120-min incubation suggesting that although further metabolism of naphthalene oxide glutathione adducts formed intracellularly is possible, extracellular glutathione adducts cannot penetrate the hepatocellular membrane. Small amounts of radiolabel from [3H]naphthalene 1,2-oxide were bound covalently to macromolecules in hepatocytes; the rate of this binding slowed rapidly after the first minute of incubation. Severe blebbing of the surface of the hepatocytes was noted in cells incubated for 30 min with 480 microM naphthalene oxide. Many of the cells were vacuolated at 60 min and progressed to frank necrosis with pyknotic nuclei and inability to exclude trypan blue. Cells incubated with 1-naphthol responded in a qualitatively similar fashion to those cells incubated with epoxide; however, hepatocytes incubated with 1-naphthol progressed to frank cellular necrosis at a slower rate. In hepatocytes partially depleted of glutathione by pretreatment with buthionine sulfoximine, addition of 1S,2R-naphthalene oxide at a rate of 1 nmol/min/10(6) cells resulted in significant losses in cell viability. In contrast, no losses in cell viability were observed with the enantiomer, 1R,2S-naphthalene oxide. Both epoxides produced similar losses in cellular glutathione levels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Inhibition of glutathione disulfide reductase by glutathione   总被引:2,自引:0,他引:2  
Rat-liver glutathione disulfide reductase is significantly inhibited by physiological concentrations of the product, glutathione. GSH is a noncompetitive inhibitor against GSSG and an uncompetitive inhibitor against NADPH at saturating concentrations of the fixed substrate. In both cases, the inhibition by GSH is parabolic, consistent with the requirement for 2 eq. of GSH in the reverse reaction. The inhibition of GSSG reduction by physiological levels of the product, GSH, would result in a significantly more oxidizing intracellular environment than would be realized in the absence of inhibition. Considering inhibition by the high intracellular concentration of GSH, the steady-state concentration of GSSG required to maintain a basal glutathione peroxidase flux of 300 nmol/min/g in rat liver is estimated at 8-9 microM, about 1000-fold higher than the concentration of GSSG predicted from the equilibrium constant for glutathione reductase. The kinetic properties of glutathione reductase also provide a rationale for the increased glutathione (GSSG) efflux observed when cells are exposed to oxidative stress. The resulting decrease in intracellular GSH relieves the noncompetitive inhibition of glutathione reductase and results in an increased capacity (Vmax) and decreased Km for GSSG.  相似文献   

20.
The expression of three classes of glutathione S-transferases (GSTs), Alpha, Mu, and Pi was investigated in the nasal mucosae of rats during development using immunohistochemical methods. GST Alpha and Mu were first detected in the supranuclear region of sustentacular cells on embryonic days 16. The Bowman's glands expressed differential patterns of immunoreactivity during development, beginning at postnatal day (P) 2 and P6 for Alpha and Mu classes, respectively and being greatest at P11 for both. The acinar cells of vomeronasal glands in the vomeronasal organ expressed Alpha and Mu classes of GSTs from P11 onwards. In the septal organ of Masera, the supranuclear region of sustentacular cells expressed GSTs from P11 with little or no variation during development. In the respiratory mucosa, Alpha and Mu classes of GSTs were detected at the brush borders of ciliated cells and in the acinar cells of posterior septal glands, but not in anterior septal or respiratory glands located on the turbinates. Compared to olfactory mucosa, the changes in immunoreactivity for GSTs were less pronounced in the respiratory mucosa during development. Specific GST Pi immunoreactivity was not detected in the nasal mucosae at any stage of development studied. The occurrence of GSTs in the nasal mucosa, including olfactory, vomeronasal, septal, and respiratory epithelia, suggests that the GSTs are actively involved in the biotransformation of xenobiotics including odorants and pheromones, and may also participate in perireceptor processes such as odorant clearance. In addition, we have developed a working model describing the cellular localization of certain phase I (e.g., cytochrome P-450s) and phase II (e.g., GSTs, -glutamyl transpeptidase) biotransformation enzymes in the olfactory mucosa and their proposed roles in xenobiotic metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号