首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytochrome P450 enzyme systems catalyze the metabolism of a wide variety of naturally occurring and foreign compounds by reactions requiring NADPH and O2. Cytochrome P450 also catalyzes peroxide-dependent hydroxylation of substrates in the absence of NADPH and O2. Peroxidases such as chloroperoxidase and horseradish peroxidase catalyze peroxide-dependent reactions similar to those catalyzed by cytochrome P450. The kinetic and chemical mechanisms of the NADPH and O2-supported dealkylation reactions catalyzed by P450 have been investigated and compared with those catalyzed by P450 and peroxidases when the reactions are supported by peroxides. Detailed kinetic studies demonstrated that chloroperoxidase- and horseradish peroxidase-catalyzed N-demethylations proceed by a Ping Pong Bi Bi mechanism whereas P450-catalyzed O-dealkylations proceed by sequential mechanisms. Intramolecular isotope effect studies demonstrated that N-demethylations catalyzed by P450s and peroxidases proceed by different mechanisms. Most hemeproteins investigated catalyzed these reactions via abstraction of an alpha-carbon hydrogen whereas reactions catalyzed by P-450 and chloroperoxidase proceeded via an initial one-electron oxidation followed by alpha-carbon deprotonation. 18O-Labeling studies of the metabolism of NMC also demonstrated differences between the peroxidases and P450s. Because the hemeprotein prosthetic groups of P450, chloroperoxidase, and horseradish peroxidase are identical, the differences in the catalytic mechanisms result from differences in the environments provided by the proteins for the heme active site. It is suggested that the axial heme-iron thiolate moiety in P450 and chloroperoxidase may play a critical role in determining the mechanism of N-demethylation reactions catalyzed by these proteins.  相似文献   

2.
It is shown that the process of mutation in the CYP2 family of the superfamily of P450 cytochromes is species-specific (man, rat, and mouse). It is also shown that, within one species (rat), different families (CYP2 and CYP11) have different mutation spectra, indicating a high specificity of the mutation process for the families of cytochrome genes. A similar specificity was demonstrated for five families (CYP1, CYP2, CYP6, CYP7, CYP11) as compared with globins and prions. The analysis of the evolutionary mutation pattern, and the pattern of pseudogenes and damaged alleles of the CYP21 family (found in patients with congenital adrenal hyperplasia) does not confirm the widely accepted hypothesis that mutations arising in pseudogenes are transduced to normal alleles of the CYP21 gene through gene conversion.  相似文献   

3.
Nuclear receptors CAR and PXR play a key role in cytochrome P450 gene induction by xenobiotics. Human cytochrome P450 3A7 (CYP3A7) is expressed from early in gestation until the perinatal period, when there is a switch in expression to CYP3A4. Here we demonstrate that a PXR and CAR responsive enhancer is located approximately 8 kb upstream of the proximal CYP3A7 promoter. This distal xenobiotic responsive enhancer module (XREM) is conserved with the XREM of CYP3A4. Interestingly, not only the XREM, but also the entire promoters exhibit 90% sequence identity up to -8.8 kb, indicating a close evolutionary distance. We propose that the promoters have coevolved to functionally conserve P450 gene induction in response to xenobiotics through CAR and PXR. Thus, nuclear receptors for xenobiotics may not only play a role to provide a survival advantage during adulthood, but also to protect the embryo against endogenous and exogenous toxins.  相似文献   

4.
5.
昆虫细胞色素P450基因的多样性、进化及表达调控   总被引:4,自引:1,他引:4  
郭亭亭  姜辉  高希武 《昆虫学报》2009,52(3):301-311
细胞色素P450单加氧酶(cytochrome P450 monooxygenases, P450s)是由多个功能相关的亚铁血红素 硫醇盐蛋白基因组成的一个基因超家族, 在各种内源和外源物质的代谢中起着主要作用。目前GenBank中注册的昆虫P450基因序列已超过1 000个, 其中双翅目占序列总数的74%, 鳞翅目占序列总数的16%。而昆虫P450基因序列已克隆的全长序列中大部分属于CYP4和CYP6家族, 两个家族成员分别占总数的20%和45%。利用GenBank中现已注册的昆虫P450基因的cDNA全长序列进行比对并绘制进化树, 揭示不同种类昆虫P450的亲缘关系。结果显示基于P450基因的昆虫部分目的进化关系与大部分先前依据其他分子数据或形态分类学得到的昆虫系统进化关系基本吻合。现有研究表明, 细胞色素P450基因的表达可能受顺式作用元件(cis-acting element)、反式作用因子(trans-acting factor)或两者共同调控, 调控可能涉及转录增强的转录机制或mRNA稳定性增加的转录后机制。  相似文献   

6.
Cytochrome P450 reductase (CPR) is the redox partner of P450 monooxygenases, involved in primary and secondary metabolism of eukaryotes. Two novel CPR genes, sharing 34% amino acid identity, were found in the filamentous ascomycete Cochliobolus lunatus. Fungal genomes were searched for putative CPR enzymes. Phylogenetic analysis suggests that multiple independent CPR duplication events occurred in fungi, whereas P450-CPR fusion occurred before the diversification of Dikarya and Zygomycota. Additionally, losses of methionine synthase reductase were found in certain fungal taxa; a truncated form of this enzyme was conserved in Pezizomycotina. In fungi, high numbers of cytochrome P450 enzymes, multiple CPRs, and P450-CPR fusion proteins were associated with filamentous growth. Evolution of multiple CPR-like oxidoreductases in filamentous fungi might have been driven by the complexity of biochemical functions necessitated by their growth form, as opposed to yeast.  相似文献   

7.
The anti-cholesterol natural product herboxidiene is synthesized by a noniterative modular polyketide synthase (HerB, HerC and HerD) and three tailoring enzymes (HerE, HerF and HerG) in Streptomyces chromofuscus A7847. In this work, the putative monooxygenase HerG was expressed in Escherichia coli and the purified enzyme was subjected to biochemical studies. It was identified as a cytochrome P450 enzyme responsible for the stereospecific hydroxylation at C-18. This enzyme is highly substrate-specific as it efficiently hydroxylates 18-deoxy-25-demethyl-herboxidiene, but showed no activity towards 18-deoxy-herboxidiene. The kcat/Km value for the HerG-catalyzed hydroxylation of 18-deoxy-25-demethyl-herboxidiene was determined to be 1669.70 ± 47.36 M−1 s−1. In vitro co-reaction of HerG with the methyltransferase HerF and analysis of the product formation in S. chromofuscus A7847 revealed that the biosynthetic intermediate 18-deoxy-25-demethyl-herboxidiene is successively hydroxylated at C-18 by HerG and methylated at 17-OH to yield the final product herboxidiene. The minor metabolite 18-deoxy-hereboxidiene is a byproduct of the biosynthetic pathway.  相似文献   

8.
The neighbourhoods of cytochrome P450 (CYP) genes in deuterostome genomes, as well as those of the cnidarians Nematostella vectensis and Acropora digitifera and the placozoan Trichoplax adhaerens were examined to find clues concerning the evolution of CYP genes in animals. CYP genes created by the 2R whole genome duplications in chordates have been identified. Both microsynteny and macrosynteny were used to identify genes that coexisted near CYP genes in the animal ancestor. We show that all 11 CYP clans began in a common gene environment. The evidence implies the existence of a single locus, which we term the ‘cytochrome P450 genesis locus’, where one progenitor CYP gene duplicated to create a tandem set of genes that were precursors of the 11 animal CYP clans: CYP Clans 2, 3, 4, 7, 19, 20, 26, 46, 51, 74 and mitochondrial. These early CYP genes existed side by side before the origin of cnidarians, possibly with a few additional genes interspersed. The Hox gene cluster, WNT genes, an NK gene cluster and at least one ARF gene were close neighbours to this original CYP locus. According to this evolutionary scenario, the CYP74 clan originated from animals and not from land plants nor from a common ancestor of plants and animals. The CYP7 and CYP19 families that are chordate-specific belong to CYP clans that seem to have originated in the CYP genesis locus as well, even though this requires many gene losses to explain their current distribution. The approach to uncovering the CYP genesis locus overcomes confounding effects because of gene conversion, sequence divergence, gene birth and death, and opens the way to understanding the biodiversity of CYP genes, families and subfamilies, which in animals has been obscured by more than 600 Myr of evolution.  相似文献   

9.
Cytochrome P450 reductase (CPR) is the redox partner of P450 monooxygenases, involved in primary and secondary metabolism of eukaryotes. Two novel CPR genes, sharing 34% amino acid identity, were found in the filamentous ascomycete Cochliobolus lunatus. Fungal genomes were searched for putative CPR enzymes. Phylogenetic analysis suggests that multiple independent CPR duplication events occurred in fungi, whereas P450-CPR fusion occurred before the diversification of Dikarya and Zygomycota. Additionally, losses of methionine synthase reductase were found in certain fungal taxa; a truncated form of this enzyme was conserved in Pezizomycotina. In fungi, high numbers of cytochrome P450 enzymes, multiple CPRs, and P450-CPR fusion proteins were associated with filamentous growth. Evolution of multiple CPR-like oxidoreductases in filamentous fungi might have been driven by the complexity of biochemical functions necessitated by their growth form, as opposed to yeast.  相似文献   

10.
16,17-Epoxysterol plays an important role in pharmaceutical steroid synthesis. To investigate the potential application of cytochrome P450 for epoxysterol synthesis, an approach to the epoxidation of 16,17-epoxysterol, based on directed evolution of cytochrome P450 BM-3, was developed. This comprised random gene mutagenesis for optimizing the activity of P450 BM-3 for epoxidation of hydrophobic sterol, followed by the 7-ethoxycoumarin de-ethylation assay for general enzyme activity detection and the modified picric acid assay for epoxidation activity screening. By the two-step screening, one mutant from 792 clones showed specific substrate activity of converting progesterone to 16,17-epoxysterol, which validated the possibility to evolve the cytochrome P450 for the synthesis of steroidal epoxides.  相似文献   

11.
Single nucleotide polymorphisms in cytochrome P450 genes from barley   总被引:12,自引:0,他引:12  
Plant cytochrome P450s are known to be essential in a number of economically important pathways of plant metabolism but there are also many P450s of unknown function accumulating in expressed sequence tag (EST) and genomic databases. To detect trait associations that could assist in the assignment of gene function and provide markers for breeders selecting for commercially important traits, detection of polymorphisms in identified P450 genes is desirable. Polymorphisms in EST sequences provide so-called perfect markers for the associated genes. The International Triticeae EST Cooperative data base of 24,344 ESTs was searched for sequences exhibiting homology to P450 genes representing the nine known clans of plant P450s. Seventy five P450 ESTs were identified of which 24 had best matches in Genbank to P450 genes of known function and 51 to P450s of unknown function. Sequence information from PCR products amplified from the genomic template DNA of 11 barley varieties was obtained using primers designed from six barley P450 ESTs and one durum wheat P450 EST. Single nucleotide polymorphisms (SNPs) between barley varieties were identified using five of the seven PCR products. A maximum of five SNPs and three haplotypes among the 11 barley lines were detected in products from any one primer pair. SNPs in three PCR products led to changes between barley varieties in at least one restriction site enabling genotyping and mapping without the expense of a specialist SNP detection system. The overall frequency of SNPs across the 11 barley varieties was 1 every 131 bases.  相似文献   

12.
13.
Cytochromes P450 (CYPs) catalyse diverse reactions and are key enzymes in fungal primary and secondary metabolism, and xenobiotic detoxification. CYP enzymatic properties and substrate specificity determine the reaction outcome. However, CYP-mediated reactions may also be influenced by their redox partners. Filamentous fungi with numerous CYPs often possess multiple microsomal redox partners, cytochrome P450 reductases (CPRs). In the plant pathogenic ascomycete Cochliobolus lunatus we recently identified two CPR paralogues, CPR1 and CPR2. Our objective was to functionally characterize two endogenous fungal cytochrome P450 systems and elucidate the putative physiological roles of CPR1 and CPR2. We reconstituted both CPRs with CYP53A15, or benzoate 4-hydroxylase from C. lunatus, which is crucial in the detoxification of phenolic plant defence compounds. Biochemical characterization using RP-HPLC shows that both redox partners support CYP activity, but with different product specificities. When reconstituted with CPR1, CYP53A15 converts benzoic acid to 4-hydroxybenzoic acid, and 3-methoxybenzoic acid to 3-hydroxybenzoic acid. However, when the redox partner is CPR2, both substrates are converted to 3,4-dihydroxybenzoic acid. Deletion mutants and gene expression in mycelia grown on media with inhibitors indicate that CPR1 is important in primary metabolism, whereas CPR2 plays a role in xenobiotic detoxification.  相似文献   

14.

Background  

Cytochrome P450 monooxygenases (P450s) catalyze oxidation of various substrates using oxygen and NAD(P)H. Plant P450s are involved in the biosynthesis of primary and secondary metabolites performing diverse biological functions. The recent availability of the soybean genome sequence allows us to identify and analyze soybean putative P450s at a genome scale. Co-expression analysis using an available soybean microarray and Illumina sequencing data provides clues for functional annotation of these enzymes. This approach is based on the assumption that genes that have similar expression patterns across a set of conditions may have a functional relationship.  相似文献   

15.
烟草细胞色素P450的基因组学分析   总被引:1,自引:0,他引:1  
细胞色素P450是一类含血红素的单加氧酶超基因家族, 在植物多种代谢途径中起着重要作用。为了解烟草中的P450的种类和数量, 文章将植物代表性P450蛋白质序列与烟草基因组序列比对, 在烟草基因组中鉴定了44个P450家族共263个成员。将这些烟草P450基因与烟草表达序列标签(EST)比对, 发现173个成员有EST证据。通过与拟南芥中已知的P450蛋白序列比较, 分析了部分烟草P450蛋白序列的特征和二级结构。根据烟草基因芯片数据和部分基因的RT-PCR结果, 发现73个烟草P450基因能够在不同的生长发育时期表达, 其中部分基因具有组织特异性。这些研究结果为烟草P450基因功能的深入分析奠定了基础。  相似文献   

16.
Benzanthrone, an anthraquinone dye intermediate, is commonly used for the synthesis of a number of polycyclic vat and disperse dyes. Our prior studies have shown that benzanthrone can be metabolized by rat hepatic microsomal cytochrome P450 (P450) (Biochem. Int., 18, 1989, 1237). In this study, the interaction of benzanthrone with rat hepatic microsomal P-450 and its effect on xenobiotic metabolism have been investigated. Parenteral administration of benzanthrone (40 mg/kg body weight) for 3, 7, or 21 days caused no change in the relative body weight or organ weight of rats. The levels of P450 were found to be reduced (33%-50%) in all the benzanthrone-exposed animals at all the time periods. In vitro addition of benzanthrone caused a spectral change with oxidized P450 and concentration-dependent reduction in the carbon monoxide spectrum of dithionite-reduced P450. The addition of benzanthrone to hepatic microsomes prepared from phenobarbital-treated rats resulted in spectral changes characterized by an absorbance maximum at 397 nm indicative of type I binding. In vitro addition of benzanthrone showed a concentration-dependent inhibition of hepatic aminopyrine N-demethylase (APD) and ethoxyresorufin-O-deethylase (ERD) activities with respective I50 values of 9.5 x 10(-4) and 8.0 x 10(-5) M. However, the inhibition of aryl hydrocarbon hydroxylase (AHH) even at the highest concentration of benzanthrone (10(-2) M), was of the order of only 29%. In vivo administration of benzanthrone also led to the inhibition of APD, AHH, and ERD activities at all treatment times although the magnitude of inhibition was of a lower order.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Monocrotophos (MCP) is a widely used organophosphate (OP) pesticide. We studied apoptotic changes and their correlation with expression of selected cytochrome P450s (CYPs) in PC12 cells exposed to MCP. A significant induction in reactive oxygen species (ROS) and decrease in glutathione (GSH) levels were observed in cells exposed to MCP. Following the exposure of PC12 cells to MCP (10(-5) M), the levels of protein and mRNA expressions of caspase-3/9, Bax, Bcl(2), P(53), P(21), GSTP1-1 were significantly upregulated, whereas the levels of Bclw, Mcl1 were downregulated. A significant induction in the expression of CYP1A1/1A2, 2B1/2B2, 2E1 was also observed in PC12 cells exposed to MCP (10(-5) M), whereas induction of CYPs was insignificant in cells exposed to 10(-6) M concentration of MCP. We believe that this is the first report showing altered expressions of selected CYPs in MCP-induced apoptosis in PC12 cells. These apoptotic changes were mitochondria mediated and regulated by caspase cascade. Our data confirm the involvement of specific CYPs in MCP-induced apoptosis in PC12 cells and also identifies possible cellular and molecular mechanisms of organophosphate pesticide-induced apoptosis in neuronal cells.  相似文献   

18.
Understanding the genetic basis of adaptation is one of the primary goals of evolutionary biology. The evolution of xenobiotic resistance in insects has proven to be an especially suitable arena for studying the genetics of adaptation, and resistant phenotypes are known to result from both coding and regulatory changes. In this study, we examine the evolutionary history and population genetics of two Drosophila mettleri cytochrome P450 genes that are putatively involved in the detoxification of alkaloids present in two of its cactus hosts: saguaro (Carnegiea gigantea) and senita (Lophocereus schottii). Previous studies demonstrated that Cyp28A1 was highly up-regulated following exposure to rotting senita tissue while Cyp4D10 was highly up-regulated following exposure to rotting saguaro tissue. Here, we show that a subset of sites in Cyp28A1 experienced adaptive evolution specifically in the D. mettleri lineage. Moreover, neutrality tests in several populations were also consistent with a history of selection on Cyp28A1. In contrast, we did not find evidence for positive selection on Cyp4D10, although this certainly does not preclude its involvement in host plant use. A surprising result that emerged from our population genetic analyses was the presence of significant genetic differentiation between flies collected from different host plant species (saguaro and senita) at Organ Pipe National Monument, Arizona, USA. This preliminary evidence suggests that D. mettleri may have evolved into distinctive host races that specialize on different hosts, a possibility that warrants further investigation.  相似文献   

19.
昆虫细胞色素P450基因的克隆及其策略   总被引:1,自引:0,他引:1  
本记述了目前已克隆的105个昆虫细胞色素P450基因cDNA和片段,它们分属CYP4、CYP6、CYP9、CYP12、CYP18和CYP28等6个家族:同时,综述和分析了克隆这些基因、cDNA和片段所采用的策略及其优缺点。  相似文献   

20.

Background  

Transposons, i.e. transposable elements (TEs), are the major internal spontaneous mutation agents for the variability of eukaryotic genomes. To address the general issue of whether transposons mediate genomic changes in environment-adaptation genes, we scanned two alleles per each of the six xenobiotic-metabolizing Helicoverpa zea cytochrome P450 loci, including CYP6B8, CYP6B27, CYP321A1, CYP321A2, CYP9A12v3 and CYP9A14, for the presence of transposon insertions by genome walking and sequence analysis. We also scanned thirteen Drosophila melanogaster P450s genes for TE insertions by in silico mapping and literature search.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号