首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using HeLa S-3 cells synchronized by selective detachment, in this paper we report a parallel study of nuclear morphology and autoradiography grain patterns between middle G1 and middle S phases. Our results show two distinct [3H]-thymidine labeling patterns. The first "peripheral" labeling pattern has a characteristic nuclear size distribution, in contrast to the heterogeneous and varying size distributions of Feulgen-stained nuclei, and apparently is characteristic of very early S phase. The sizes of the second labeling pattern--homogeneous or inhomogeneous grain distribution throughout the nucleus--are equal or larger than the first and vary with S phase progression. Together, the corresponding nuclear sizes of the labeled nuclei represent the larger extreme of nuclear areas, and the labeling index closely parallels the fraction of nuclei with areas larger than the minimum size of the labeled nuclei. These results suggest a characteristic nuclear size (reflecting unique intranuclear DNA distribution) as a necessary, if not sufficient, requirement for S phase initiation. Parallel experimentation with rat liver cells-synchronized in vivo by partial hepatectomy and analyzed by thin section autoradiography--confirms the existence of a peripheral labeling pattern in both the very early part and the very late part of S phase, which reconciles our data with previous results and points to the fact that both initiation and termination sites for DNA replication are near the nuclear periphery.  相似文献   

2.
In the present study, both post-irradiation DNA synthesis and G1 phase accumulation were analyzed in lymphoblastoid cell lines (LCLs) and fibroblast cell strains derived from (Saudi) patients with non-Hodgkin's lymphoma (NHL), ataxia telangiectasia (AT), AT heterozygotes and normal subjects. A comparison of the percent DNA synthesis inhibition (assayed by 3H-thymidine uptake 30 min after irradiation), and a 24 h post-irradiation G2 phase accumulation determined by flow cytometry placed the AT heterozygotes and the NHL patients in an intermediate position between the normal subjects (with maximum DNA synthesis inhibition and minimum G2 phase accumulation) and the AT homozygotes (with minimum DNA synthesis inhibition and maximum G2 accumulation). The similarity between AT heterozygotes and the NHL patients with respect to the two parameters studied after irradiation was statistically significant. The data indicating a moderate abnormality in the control of cell cycle progression after irradiation in the LCLs and fibroblasts from NHL patients may explain the enhanced cellular and chromosomal radiosensitivity in these patients reported by us earlier. In addition to demonstrating a link between cell cyle abnormality and radiosensitivity as a possible basis for cancer susceptibility, particularly in the NHL patients, the present studies emphasized the usefulness of the assay for 24 h post-irradiation G2 phase accumulation developed by Lavin et al. (1992) in characterizing AT heterozygote-like cell cycle anomally in cancer patients irrespective of whether they carried the AT gene or any other affecting the cell cycle.  相似文献   

3.
A modified immunocytochemical method for identification of S-phase cells in root meristems is desribed. The technique combines incorporation of BrdUrd, rapid isolation of cell nuclei and indirect immunocytochemical detection of BrdUrd-labeled areas of chromatin using monoclonal anti-BrdUrd (I) and FITC-conjugated (II) antibodies. The labeling indexes calculated using 3H-thymidine autoradiography and BrdUrd-immunofluorescence in root meristems of Vicia faba subsp. minor were found comparable. However, the increased sensitivity of fluorescent staining reveals an enhanced complexity of visible structure emerging during successive periods of S-phase, allowing for discriminating not only quantitative but also qualitative aspects of nuclear labeling patterns characteristic for specific periods of DNA replication.  相似文献   

4.
5.
We investigated 2,4-D-induced leaf senescence in young mustard seedlings. A set of morphometric, biochemical and molecular parameters were analyzed to characterize senescence markers. In accordance with earlier reports, chloroplast-membrane degradation marked the early phase of leaf senescence based on the analysis of the galactolipid fraction. Degradation of grana occurred earlier to that of the envelope, as revealed by the relative level of their specific galactolipids, namely, monogalactosyl diglyceride and digalactosyl diglyceride. Phospholipids showed extensive degradation resulting in the accumulation of lyso-derivatives of major phospholipids and phosphatidic acid (PA) in senescing leaves. Catalase activity was stimulated by 2,4-D and reflected scavenging of reactive oxygen species. Nuclear DNA degradation, a previously known death signal that represented a point of no return from progression of senescence, occurred late on the 4th day subsequent to 2,4-D supplementation. AgNO3, an inhibitor of ethylene biosynthesis, inhibited leaf senescence by ca. 54% based on PA content Involvement of 2,4-D, ethylene and abscisic acid in leaf senescence is discussed in relation to hormonal interplay.  相似文献   

6.
Structure-functional characterization of vitamin D receptor (VDR) requires identification of structurally distinct areas of VDR-ligand-binding domain (VDR-LBD) important for biological properties of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). We hypothesized that covalent attachment of the ligand into VDR-LBD might alter ‘surface structure’ of that area influencing biological activity of the ligand. We compared anti-proliferative activity of three affinity alkylating derivatives of 1,25(OH)2D3 containing an alkylating probe at 1,3 and 11 positions. These compounds possessed high-affinity binding for VDR; and affinity labeled VDR-LBD. But, only the analog with probe at 3-position significantly altered growth in keratinocytes, compared with 1,25(OH)2D3. Molecular models of these analogs, docked inside VDR-LBD tentatively identified Ser237 (helix-3: 1,25(OH)2D3-1-BE), Cys288 (β-hairpin region: 1,25(OH)2D3-3-BE,) and Tyr295 (helix-6: 1,25(OH)2D3-11-BE,) as amino acids that are potentially modified by these reagents. Therefore, we conclude that the β-hairpin region (modified by 1,25(OH)2D3-3-BE) is most important for growth inhibition by 1,25(OH)2D3, while helices 3 and 6 are less important for such activity.  相似文献   

7.
We present a comparative differential scanning calorimetric study of the effects of the animal sterol cholesterol (Chol) and the plant sterols campesterol (Camp) and brassicasterol (Bras) on the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers. Camp and Bras differ from Chol in having a C24 methyl group and, additionally for Bras, a C22 trans-double bond. Camp and especially Bras decrease the temperature, cooperativity and enthalpy of the DPPC pretransition more than Chol, although these effects are attenuated at higher sterol levels. This indicates that they destabilize gel-state DPPC bilayers to a greater extent, but are less soluble, than Chol. Not surprisingly, all three sterols have similar effects on the sterol-poor sharp component of the DPPC main phase transition. However, Camp and especially Bras less effectively increase the temperature and decrease the cooperativity and enthalpy of the broad component of the main transition than Chol. This indicates that at higher sterol concentrations, Camp and Bras are less miscible and less effective than Chol at ordering the hydrocarbon chains of the sterol-enriched fluid DPPC bilayers. Overall, these alkyl side chain modifications generally reduce the ability of Chol to produce its characteristic effects on DPPC bilayer physical properties. These differences are likely due to the less extended and more bent conformations of the alkyl side chains of Camp and Bras, producing sterols with a greater effective cross-sectional area and reduced length than Chol. Hence, the structure of Chol is likely optimized for maximum solubility in, as opposed to maximum ordering of, phospholipid bilayers.  相似文献   

8.
Despite recent progress in our understanding of the numerous functions of individual subunits of eukaryotic translation initiation factor (eIF) 3, little is known on the molecular level. Using NMR spectroscopy, we determined the first solution structure of an interaction between eIF3 subunits. We revealed that a conserved tryptophan residue in the human eIF3j N-terminal acidic motif (NTA) is held in the helix α1 and loop 5 hydrophobic pocket of the human eIF3b RNA recognition motif (RRM). Mutating the corresponding “pocket” residues in its yeast orthologue reduces cellular growth rate, eliminates eIF3j/HCR1 association with eIF3b/PRT1 in vitro and in vivo, affects 40S occupancy of eIF3, and produces a leaky scanning defect indicative of a deregulation of the AUG selection process. Unexpectedly, we found that the N-terminal half of eIF3j/HCR1 containing the NTA is indispensable and sufficient for wild-type growth of yeast cells. Furthermore, we demonstrate that deletion of either j/HCR1 or its N-terminal half only, or mutation of the key tryptophan residues results in the severe leaky scanning phenotype partially suppressible by overexpressed eIF1A, which is thought to stabilize properly formed preinitiation complexes at the correct start codon. These findings indicate that eIF3j/HCR1 remains associated with the scanning preinitiation complexes and does not dissociate from the small ribosomal subunit upon mRNA recruitment, as previously believed. Finally, we provide further support for earlier mapping of the ribosomal binding site for human eIF3j by identifying specific interactions of eIF3j/HCR1 with small ribosomal proteins RPS2 and RPS23 located in the vicinity of the mRNA entry channel. Taken together, we propose that eIF3j/HCR1 closely cooperates with the eIF3b/PRT1 RRM and eIF1A on the ribosome to ensure proper formation of the scanning-arrested conformation required for stringent AUG recognition.  相似文献   

9.
10.
Maurocalcine (MCa) is a 33-amino acid residue peptide that was initially identified in the Tunisian scorpion Scorpio maurus palmatus. This peptide triggers interest for three main reasons. First, it helps unravelling the mechanistic basis of Ca2+ mobilization from the sarcoplasmic reticulum because of its sequence homology with a calcium channel domain involved in excitation-contraction coupling. Second, it shows potent pharmacological properties because of its ability to activate the ryanodine receptor. Finally, it is of technological value because of its ability to carry cell-impermeable compounds across the plasma membrane. Herein, we characterized the molecular determinants that underlie the pharmacological and cell-penetrating properties of maurocalcine. We identify several key amino acid residues of the peptide that will help the design of cell-penetrating analogues devoid of pharmacological activity and cell toxicity. Close examination of the determinants underlying cell penetration of maurocalcine reveals that basic amino acid residues are required for an interaction with negatively charged lipids of the plasma membrane. Maurocalcine analogues that penetrate better have also stronger interaction with negatively charged lipids. Conversely, less effective analogues present a diminished ability to interact with these lipids. These findings will also help the design of still more potent cell penetrating analogues of maurocalcine.  相似文献   

11.
12.
Modified heparin disaccharides were obtained by the alkaline treatment of a solution containing the disulfated heparin disaccharide DeltaHexA-alpha-(1-->4)-D-GlcNSO(3),6SO(3). Their structures were characterized by one- and two-dimensional NMR spectroscopy: DeltaHexA-alpha-(1-->4)-1,6-anhydro-GlcNSO(3), DeltaHexA-alpha-(1-->4)-1,6-anhydro-ManNSO(3) and DeltaHexA-alpha-(1-->4)-ManNSO(3),6OSO(3). NMR spectroscopy, in combination with HPLC, provided the composition of the mixture. Characteristic NMR signals of the disaccharides were identified, even at low levels, in a high field of (1)H-(13)C correlation NMR spectra (HSQC) of a low molecular weight heparin (LMWH) obtained by beta-elimination (alkaline hydrolysis) of heparin benzyl ester, providing a more complete structural profile of this class of compounds.  相似文献   

13.
Shinkarev VP  Wraight CA 《FEBS letters》2007,581(8):1535-1541
The cytochrome bc(1) complex (commonly called Complex III) is the central enzyme of respiratory and photosynthetic electron transfer chains. X-ray structures have revealed the bc(1) complex to be a dimer, and show that the distance between low potential (b(L)) and high potential (b(H)) hemes, is similar to the distance between low potential hemes in different monomers. This suggests that electron transfer between monomers should occur at the level of the b(L) hemes. Here, we show that although the rate constant for b(L)-->b(L) electron transfer is substantial, it is slow compared to the forward rate from b(L) to b(H), and the intermonomer transfer only occurs after equilibration within the first monomer. The effective rate of intermonomer transfer is about 2-orders of magnitude slower than the direct intermonomer electron transfer.  相似文献   

14.
DNA complexes made with cationic polymers (polyplexes) developed as nonviral vectors for gene therapy must be enabled to cross through vascular endothelium to transfect underlying tissues upon their administration in the blood circulation. Here, we evaluated the transendothelial passage (TEP) of DNA complexes made with histidinylated linear polyethylenimine (His-lPEI) or linear polyethylenimine (lPEI). In vitro studies were performed by using established transwell lung and skeletal muscle vascular endothelial barriers. The models were composed of a monolayer of human lung microvascular endothelial (HMVEC-L) cells and mouse cardiac endothelial (MCEC) cells formed on a PET insert and immortalized human tracheal epithelial (ΣCFTE29o-) cells and mouse myoblasts (C2C12) as target cells cultured in the lower chamber, respectively. When the vascular endothelium monolayer was established and characterized, the transfection efficiency of target (ΣCFTE29o- and C2C12) cells with plasmid DNA encoding luciferase was used to evaluate TEP of polyplexes. The luciferase activities with His-lPEI and lPEI polyplexes compared to those obtained in the absence of endothelial cell monolayer were 6.5% and 4.3% into ΣCFTE29o- cells, and 18.5% and 0.23% into C2C12 cells, respectively. The estimated rate for His-lPEI polyplexes was 0.135 μg/cm2.h and 0.385 μg/cm2.h through the HMVEC-L and MCEC monolayers, respectively. These results indicate that His-lPEI polyplexes can pass through the lung and skeletal muscle vascular endothelium and can transfect underlying cells.  相似文献   

15.
Structural insights into the equilibrium folding mechanism of the alpha subunit of tryptophan synthase (αTS) from Escherichia coli, a (βα)8 TIM barrel protein, were obtained with a pair of complementary nuclear magnetic resonance (NMR) spectroscopic techniques. The secondary structures of rare high-energy partially folded states were probed by native-state hydrogen-exchange NMR analysis of main-chain amide hydrogens. 2D heteronuclear single quantum coherence NMR analysis of several 15N-labeled nonpolar amino acids was used to probe the side chains involved in stabilizing a highly denatured intermediate that is devoid of secondary structure. The dynamic broadening of a subset of isoleucine and leucine side chains and the absence of protection against exchange showed that the highest energy folded state on the free-energy landscape is stabilized by a hydrophobic cluster lacking stable secondary structure. The core of this cluster, centered near the N-terminus of αTS, serves as a nucleus for the stabilization of what appears to be nonnative secondary structure in a marginally stable intermediate. The progressive decrease in protection against exchange from this nucleus toward both termini and from the N-termini to the C-termini of several β-strands is best described by an ensemble of weakly coupled conformers. Comparison with previous data strongly suggests that this ensemble corresponds to a marginally stable off-pathway intermediate that arises in the first few milliseconds of folding and persists under equilibrium conditions. A second, more stable intermediate, which has an intact β-barrel and a frayed α-helical shell, coexists with this marginally stable species. The conversion of the more stable intermediate to the native state of αTS entails the formation of a stable helical shell and completes the acquisition of the tertiary structure.  相似文献   

16.
It is nowadays well established that gap junctions are critical gatekeepers of cell proliferation, by controlling the intercellular exchange of essential growth regulators. In recent years, however, it has become clear that the picture is not as simple as originally anticipated, as structural precursors of gap junctions can affect cell cycling by performing actions not related to gap junctional intercellular communication. Indeed, connexin hemichannels also foresee a pathway for cell growth communication, albeit between the intracellular compartment and the extracellular environment, while connexin proteins as such can directly or indirectly influence the production of cell cycle regulators independently of their channel activities. Furthermore, a novel set of connexin-like proteins, the pannexins, have lately joined in as regulators of the cell proliferation process, which they can affect as either single units or as channel entities. In the current paper, these multifaceted aspects of connexin-related signalling in cell cycling are reviewed.  相似文献   

17.
Mackerels of the genus Scomber are commercially important species, but their taxonomic status is still controversial. Although previous phylogenetic data support the recognition of Atlantic Scomber colias and Pacific Scomber japonicus as separate species, it is only based on the analysis of partial mitochondrial and nuclear DNA sequences. In an attempt to shed light on this relevant issue, we have determined the complete mitochondrial DNA sequence of S. colias, S. japonicus, and Scomber australasicus. The total length of the mitogenomes was 16,568 bp for S. colias and 16,570 bp for both S. japonicus and S. australasicus. All mitogenomes had a gene content (13 protein-coding, 2 rRNAs, and 22 tRNAs) and organization similar to that observed in Scomber scombrus and most other vertebrates. The major noncoding region (control region) ranged between 865 and 866 bp in length and showed the typical conserved blocks. Phylogenetic analyses revealed a monophyletic origin of Scomber species with regard to other scombrid fish. The major finding of this study is that S. colias and S. japonicus were significantly grouped in distinct lineages within Scomber cluster, which phylogenetically constitutes evidence that they may be considered as separate species. Additionally, molecular data here presented provide a useful tool for evolutionary as well as population genetic studies.  相似文献   

18.
Perturbations in endoplasmic reticulum (ER) homeostasis, including depletion of Ca2 + or altered redox status, induce ER stress due to protein accumulation, misfolding and oxidation. This activates the unfolded protein response (UPR) to re-establish the balance between ER protein folding capacity and protein load, resulting in cell survival or, following chronic ER stress, promotes cell death. The mechanisms for the transition between adaptation to ER stress and ER stress-induced cell death are still being understood. However, the identification of numerous points of cross-talk between the UPR and mitogen-activated protein kinase (MAPK) signalling pathways may contribute to our understanding of the consequences of ER stress. Indeed, the MAPK signalling network is known to regulate cell cycle progression and cell survival or death responses following a variety of stresses. In this article, we review UPR signalling and the activation of MAPK signalling pathways in response to ER stress. In addition, we highlight components of the UPR that are modulated in response to MAPK signalling and the consequences of this cross-talk. We also describe several diseases, including cancer, type II diabetes and retinal degeneration, where activation of the UPR and MAPK signalling contribute to disease progression and highlight potential avenues for therapeutic intervention. This article is part of a Special Issue entitled: Calcium Signaling In Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

19.
Glycogen synthase kinase (GSK) 3beta is a multifunctional protein that positively regulates myocardial apoptosis and negatively regulates hypertrophy. However, the role of GSK3beta in the diabetic myocardium is largely unknown. We found that GSK3beta became more active (less phosphorylated at serine 9) via decreased Akt phosphorylation, in parallel to c-Jun NH2 terminal kinase activation, which correlated with increased activated caspase 3 and myocardial apoptosis 3 days after streptozotocin (STZ) injection in mice. However, 28 days after STZ injection, GSK3beta became inactive, which correlated with the enhanced protein kinase C beta2 and p38 mitogen activated protein kinase expression, nuclear translocation of nuclear factor of activated T cells c3, cardiac hypertrophy and fibrosis. All of the above parameters were exacerbated in dominant-negative 14-3-3 transgenic mice. Our results suggest that GSK3beta together with 14-3-3 protein plays essential roles in the signaling of diabetic cardiomyopathy, and treatment with either losartan or tempol prevents these changes.  相似文献   

20.
Hyperimmunoglobulinemia D and periodic fever syndrome (HIDS; MIM# 260920) is a rare recessively-inherited autoinflammatory condition caused by mutations in the MVK gene, which encodes for mevalonate kinase, an essential enzyme in the isoprenoid pathway. HIDS is clinically characterized by recurrent episodes of fever and inflammation. Here we report on the case of a 2 year-old Portuguese boy with recurrent episodes of fever, malaise, massive cervical lymphadenopathy and hepatosplenomegaly since the age of 12 months. Rash, arthralgia, abdominal pain and diarrhea were also seen occasionally. During attacks a vigorous acute-phase response was detected, including elevated erythrocyte sedimentation rate, C-reactive protein, serum amyloid A and leukocytosis. Clinical and laboratory improvement was seen between attacks. Despite normal serum IgD level, HIDS was clinically suspected. Mutational MVK analysis revealed the homozygous genotype with the novel p.Arg277Gly (p.R277G) mutation, while the healthy non-consanguineous parents were heterozygous. Short nonsteroidal anti-inflammatory drugs and corticosteroid courses were given during attacks with poor benefits, whereas anakinra showed positive responses only at high doses. The p.R277G mutation here described is a novel missense MVK mutation, and it has been detected in this case with a severe HIDS phenotype. Further studies are needed to evaluate a co-relation genotype, enzyme activity and phenotype, and to define the best therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号