首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
植物氮代谢硝酸还原酶水平调控机制的研究进展   总被引:37,自引:0,他引:37  
氮代谢是植株体内最基本的物质代谢之一,硝酸还原酶是植物氮代谢的关键酶。主要对植物氮代谢在硝酸还原酶水平上调控的研究新进展,尤其是其合成/降解及活性调控机制进行了较为系统的综述。硝酸还原酶合成的调控主要发生在转录水平和翻译水平上,硝酸还原酶降解的调控主要发生在翻译后水平上,同时NO3^-及光在硝酸还原酶转录水平调控上的作用重大,硝酸还原酶编码基因转录的mRNA的稳定性强弱影响植物的氮代谢,而影响mRNA稳定性的因素很多,机理复杂;磷酸化/去磷酸化在硝酸还原酶活性调控中占举足轻重的地位,研究也比较深入。钝化蛋白也能够影响硝酸还原酶活性,许多小分子物质对硝酸还原酶活性有影响。  相似文献   

4.
The regulation of nitrate assimilation in higher plants is reviewed in relation to the availability and accumulation of reduced nitrogen. The effects of light on these processes are also considered.  相似文献   

5.
Abstract The partitioning of nitrate assimilation between root and shoot of higher plant species is indicated by the relative proportions of total plant nitrate reductase activity (NRA) in the two plant parts and the relative concentrations of nitrate and reduced N in the xylem sap. These have been collated here from the literature and temperate and tropical species compared. Both the distribution of NRA and xylem sap nitrate: reduced N indicate that the following four generalizations can be made.
  • 1 Temperate, perennial species growing in low external nitrate concentrations (about 1 mol m?3) carry out most of their nitrate assimilation in the root. As external nitrate concentration increases (in the range found in agricultural soils, 1–20 mol m?3), shoot nitrate assimilation becomes increasingly important.
  • 2 Temperate, annual legume species growing in low external nitrate concentrations carry out most of their nitrate assimilation in the root. Shoot nitrate assimilation increases in importance as external nitrate concentration is increased.
  • 3 Temperate, annual non-legume species vary greatly in their partitioning of nitrate assimilation between root and shoot when growing in low external nitrate concentrations. Regardless of the proportion carried out in the root at low external nitrate concentrations, nitrate assimilation in the shoot becomes increasingly important as external nitrate concentration is increased.
  • 4 Tropical and subtropical species, annual and perennial, carry out a substantial proportion of their nitrate assimilation in the shoot when growing in low external nitrate concentrations. The partitioning of nitrate assimilation between root and shoot remains constant as external nitrate concentration increases.
It is proposed that a greater proportion of nitrate assimilation occurs in the shoot when an increase in the rate of nitrate uptake does not induce an increase in NR level in the root. Thus, a greater proportion of the nitrate taken up remains unassimilated and is passed into the xylem. A constant partitioning of nitrate assimilation between root and shoot is achieved by balancing NR levels in the root with rates of nitrate uptake. The advantages and disadvantages of assimilating nitrate in either the root or shoot are discussed in relation to temperate and tropical habitats.  相似文献   

6.
7.
8.
The responses of nitrate reductase (NR) activity and levels of NR-mRNA to environmental nitrate and exogenous cytokinins are characterised in roots and shoots of barley ( Hordeum vulgare L., cv. Golf), using a chemostate-like culture system for controlling nitrate nutrition. Experiments were mainly performed with split root cultures where nitrate-N was supplied at a constant relative addition rate of 0.09 day−1, and distributed between the subroots in a ratio of 20%:80%. The subroot NR-mRNA level and NR activity, as well as the endogenous level of zeatin riboside (ZR), increased when the local nitrate supply to one of the subroots was increased 4-fold by reversing the nitrate addition ratio (i.e. from 20%:80% to 80%:20%). Also shoot levels of ZR, NR-mRNA and NR activity increased in response to this treatment, even though the total nitrate supply remained unaltered. External supply of ZR at 0.1 μ M caused an approximately 3-fold increase in root ZR levels within 6 h. which is comparable to the nitrate-induced increase in root ZR. External application of ZR. zeatin. isopentenyl adenine or isopentenyl adenosine at 0.1 μ M caused from insignificant to 25% increases in NR-mRNA and activity in roots and up to 100% stimulation in shoots, whereas adenine or adenosine had no effect. No synergistic effects of perturbed nitrate supply and cytokinin application were detected in either roots or shoots. The translocation of nitrate from the root to the shoot was unaffected by application of ZR or switching the nitrate distribution ratio between subroots. The data give arguments for a physiological role of cytokinins in the response of root and shoot NR to environmental nitrate availability. The nature and limitations of the physiological role of cytokinins are discussed.  相似文献   

9.
Preincubation of maize leaves crude extracts with NADH resulted in a progressive accumulation of nitrite which mimicked a rapid and lineal activation of nitrate reductase. Nevertheless, in partially purified preparations it was found that preincubation at pH 8.8 with NADH promoted a gradual inactivation of nitrate reductase. At pH 7.5, the enzyme was not inactivated by the presence of NADH alone, but, with the simultaneous presence of a low concentration of cyanide, a fast inactivation took place. The NADH-cyanide-inactivated nitrate reductase remained inactive after removing the excess of NADH and cyanide by filtration through Sephadex G-25. However, it could be readily reactivated by incubation with ferricyanide or by a short exposure to light in the presence of FAD. Prolonged irradiation caused a progressive inactivation of the photoreactivated enzyme.  相似文献   

10.
11.
Silene alba cells grown on nitrate, usually develop NADH-nitrate reductase activity only at the beginning of their growth cycle. Immunodiffusion assays, with a specific nitrate reductase antiserum, revealed the presence of cross-reacting material in cells harvested at any time during their culture. Cells grown on ammonium lacked NADH-nitrate reductase activity but contained cross-reacting material. It is suggested that S. alba cells contain an enzymically inactive, antigenic form of nitrate reductase regardless of the nitrogen source.  相似文献   

12.
Nitrate reductase and its role in nitrate assimilation in plants   总被引:16,自引:0,他引:16  
Nitrate reductase (EC 1.6.6.1) is an enzyme found in most higher plants and appears to be a key regulator of nitrate assimilation as a result of enzyme induction by nitrate. The biochemistry of nitrate reductase has been elucidated to a great extent and the role that nitrate reductase plays in regulation of nitrate assimilation is becoming understood.  相似文献   

13.
14.
15.
The short term effect of NO3 (12 mM) on nitrate reductase (NR. EC 1.6.6.1) activity has been studied in the roots, nodules and leaves of different genotypes of Vicia faba L. at the end of vegetative growth. Root and leaf NR activity responded positively to NO3 while nodule activity, where detected, proved to he strongly inhibited. The withdraw of this NO3 from the solution consistently reduced activity in the roots and leaves but surprising, promoted a significant increase in nodule activity, which matched or surpassed that of control plants On the other hand, nodules developed in the presence of 8 mM NO3 expressed an on average 141% higher level of NR activity than did controls. This effect was observed even in nodules with negligible control activity. In any case, a naturally occurring mutant (VF17) lacking root and nodule NR activity is described. The results indicate that in V. faba. the effects of NO3 and plant genotype on NR activity depended on plant organ and time of NO3 application, hut the distribution of NO3 reduction through the plain was mainly dependent on plant genotype, and to a lesser extent on NO: supply and plant age.  相似文献   

16.
Regulation of nitrate reductase (NR) by reversible phosphorylation at a conserved motif is well established in higher plants, and enables regulation of NR in response to rapid fluctuations in light intensity. This regulation is not conserved in algae NR, and we wished to test the evolutionary origin of the regulatory mechanism by physiological examination of ancient land plants. Especially a member of the lycophytes is of interest since their NR is candidate for regulation by reversible phosphorylation based on sequence analysis. We compared Selaginella kraussiana, a member of the lycophytes and earliest vascular plants, with the angiosperm Arabidopsis thaliana, and also tested the moss Physcomitrella patens. Interestingly, optimization of assay conditions revealed that S. kraussiana NR used NADH as an electron donor like A. thaliana, whereas P. patens NR activity depended on NADPH. Examination of light/darkness effects showed that S. kraussiana NR was rapidly regulated similar to A. thaliana NR when a differential (Mg2+ contra EDTA) assay was used to reveal activity state of NR. This implies that already existing NR enzyme was post-translationally activated by light in both species. Light had a positive effect also on de novo synthesis of NR in S. kraussiana, which could be shown after the plants had been exposed to a prolonged dark period (7 days). Daily variations in NR activity were mainly caused by post-translational modifications. As for angiosperms, the post-translational light activation of NR in S. kraussiana was inhibited by 3-(3,4-dichlorophenyl)-1*1-dimethylurea (DCMU), an inhibitor of photosynthesis and stomata opening. Evolutionary, a post-translational control mechanism for NR have occurred before or in parallel with development of vascular tissue in land plants, and appears to be part of a complex mechanisms for coordination of CO2 and nitrogen metabolism in these plants.  相似文献   

17.
Circadian rhythmicity of nitrate reductase activity in barley leaves   总被引:2,自引:0,他引:2  
Nitrate reductase (EC 1.6.6.1) activity showed circadian rhythmicity in the first leaf of 8–11 days old barley ( Hordeum vulgare L. cv. Herta) plants. Circadian rhythms were found using both the in vitro and in vivo method for testing the enzyme activity. When the light intensity was reduced from 65 to 20 W m−2, the amplitude was smaller and the oscillations were damped sooner. In continuous darkness nitrate reductase activity decreased in a two step process. Three different light qualities were tested which all gave the same results.  相似文献   

18.
19.
D. Kaplan  A. M. Mayer  S. H. Lips 《Planta》1978,138(3):205-209
Comparative studies of nitrate-activated nitrate reductase (NR-NO2) and nitrate-induced nitrate reductase (NR-NO3) (EC 1.6.6.2) indicate that the enzymes differ in structure, heat stability, and pH dependence, but have the same cofactor requirment. NR-NO2 developes in barley (Hordeum vulgare L. var. Dvir) seedlings as NR-NO3 disappears. A transition from the active to the inactive form of nitrate reductase takes place. Nitrite seems to activate the inactive form of the enzyme.  相似文献   

20.
Factors influencing in vivo nitrate reductase activity in triticale (×Triticosecale Wittmack) primary leaves were investigated. Nitrate reductase activity was found to be a function of reaction time or tissue weight. In the range of 1–10 mm, the optimum slice width for nitrate reductase activity in triticale was found to be 1–2 mm. The optimum exogenous nitrate concentration is 300 mM. Substantial nitrite production was obtained even when exogenous nitrate was omitted from the assay. Of the five low molecular weight organic solvents tested, n-propanol is the most effective in enhancing enzyme activity. The optimum n-propanol concentration is 1% (v/v). The concentration of phosphate buffer (pH 6) does not affect nitrate reductase activity. Enzyme activity drops significantly below or above pH 6. In our system, nitrite production is enhanced by incubating under nitrogen, instead of air. The highest level of in vivo activity of nitrate reductase was found to be 10–15 cm from tip, which is close to the basal meristem of triticale primary leaves. Younger but physiologically mature leaves have higher nitrate reductase activity than old leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号