共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of Lepidium sativum seeds showed the presence of allyl, 2-phenethyl and benzyl glucosinolates, the first two being reported for the first time from this source. The effects of temperature, pH of the extraction medium and the length of time allowed for autolysis were assessed on the benzyl glucosinolate degradation products in seed extracts. In particulàr benzyl thiocyanate was not produced at higher temperatures but at ambient and lower temperatures it exceeded isothiocyanate. Nitrile was always the major product under the conditions studied, ever at pH levels as high as 7.4. Five new possible benzyl glucosinolate degradation products were detected and evidence is presented that benzaldehyde and benzyl alcohol could be secondary products formed thermally from isothocyanate and thiocyanate, respectively. Benzyl mercaptan and benzyl methyl sulphide also appear to be thermally produced. 相似文献
2.
M.D. Chisholm 《Phytochemistry》1973,12(3):605-608
Incorporation of DL-2-aminohexanedioic acid, DL-2-amino-5-methoxycarbonyl-pentanoic acid and DL-methionine into 3-methoxycarbonylpropylglucosinolate have been demonstrated using an Erystmum species. The data support the following sequence of biosynthetic reactions: 2-aminohexanedioic acid is methylated by methionine; the resulting 2-amino-5-methoxycarbonyl-pentanoic acid is then converted into the glucosinolate. 2-Amino-5-methoxycarbonyl-pentanoic acid has been tentatively identified as a natural product in the plant. 相似文献
3.
A new hydrolysis product derived from 3-butenylglucosinolate in seeds of certain strains of Brassica campestris Yellow Sarson is described. The structure, 1-cyano-3,4-epithiobutane is proposed. If the seeds are heated at 115° for 30 min before hydrolysis, 3-butenyl isothiocyanate is the main product. 相似文献
4.
3-Methylthiopropylamine and (R)-3-methylsulphinylpropylamine have been isolated from Iberis amara and identified by PC, high voltage electropho 相似文献
5.
Triacylated cyanidin 3-(3X-glucosylsambubioside)-5-glucosides from the flowers of Malcolmia maritima
Three acylated cyanidin 3-(3(X)-glucosylsambubioside)-5-glucosides (1-3) and one non-acylated cyanidin 3-(3(X)-glucosylsambubioside)-5-glucoside (4) were isolated from the purple-violet or violet flowers and purple stems of Malcolmia maritima (L.) R. Br (the Cruciferae), and their structures were determined by chemical and spectroscopic methods. In the flowers of this plant, pigment 1 was determined to be cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-6-O-(trans-p-coumaroyl)-beta-D-glucopyranoside]-5-O-[6-O-(malonyl)-(beta-D-glucopyranoside) as a major pigment, and a minor pigment 2 was determined to be the cis-p-coumaroyl isomer of pigment 1. In the stems, pigment 3 was determined to be cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-6-O-(trans-p-coumaroyl)-beta-d-glucopyranoside]-5-O-(beta-D-glucopyranoside) as a major anthocyanin, and also a non-acylated anthocyanin, cyanidin 3-O-[2-O-(3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside) was determined to be a minor pigment (pigment 4). In this study, it was established that the acylation-enzymes of malonic acid has important roles for the acylation of 5-glucose residues of these anthocyanins in the flower-tissues of M. maritima; however, the similar enzymatic reactions seemed to be inhibited or lacking in the stem-tissues. 相似文献
6.
The effects of varying concentrations of Fe2+ (5 × 10?5 ?5 × 10?1 M) on benzylglucosinolate degradation in Lepidium sativum seed autolysates were investigated. Increased glucosinolate decomposition was observed over the whole range with a maximum effect at ca 6 × 10?3 M Fe2+, at which point glucosinolate degradation was more than three times that obtained in the absence of added Fe2+ . Nitrile formation was especially enhanced in the presence of all concentrations of Fe2+ studied, and maximum amounts were obtained at ca 6 × 10?3 M Fe2+ when a more than four-fold increase over quantities produced in the absence of Fe2+ was observed. Thiocyanate formation was also promoted with a maximum at ca 4 × 10?3 M Fe2+, but isothiocyanate production was considerably reduced in allcases. It is suggested that Fe2+ inhibits isothiocyanate formation by interfering with the availability of ascorbic acid which is a proven co-factor for most thioglucosidase isoenzymes, but that an Fe2+-ascorbate complex might then be responsible for promoting enzymic production of nitrile. The effects of a limited range of concentrations of Fe3+ and Cu+ were also studied, and results related to those for Fe2+. The relevance of the findings to natural systems and to glucosinolate-containing foods is briefly discussed. 相似文献
7.
ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis 总被引:3,自引:0,他引:3
Burow M Zhang ZY Ober JA Lambrix VM Wittstock U Gershenzon J Kliebenstein DJ 《Phytochemistry》2008,69(3):663-671
Glucosinolates are plant secondary metabolites that act as direct defenses against insect herbivores and various pathogens. Recent analysis has shown that methionine-derived glucosinolates are hydrolyzed/activated into either nitriles or isothiocyanates depending upon the plants genotype at multiple loci. While it has been hypothesized that tryptophan-derived glucosinolates can be a source of indole-acetonitriles, it has not been explicitly shown if the same proteins control nitrile production from tryptophan-derived glucosinolates as from methionine-derived glucosinolates. In this report, we formally test if the proteins involved in controlling aliphatic glucosinolate hydrolysis during tissue disruption can control production of nitriles during indolic glucosinolate hydrolysis. We show that myrosinase is not sufficient for indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate and requires the presence of functional epithospecifier protein in planta and in vitro to produce significant levels of indol-3-acetonitrile. This reaction is also controlled by the Epithiospecifier modifier 1 gene. Thus, like formation of nitriles from aliphatic glucosinolates, indol-3-acetonitrile production following tissue disruption is controlled by multiple loci raising the potential for complex regulation and fine tuning of indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate. 相似文献
8.
Hansen BG Kliebenstein DJ Halkier BA 《The Plant journal : for cell and molecular biology》2007,50(5):902-910
The cancer-preventive activity of cruciferous vegetables is commonly attributed to isothiocyanates resulting from the breakdown of the natural products glucosinolates (GSLs). Sulforaphane, the isothiocyanate derived from 4-methylsulfinylbutyl GSL, is thought to be the major agent conferring cancer-preventive properties, whereas the isothiocyanate of 4-methylthiobutyl GSL does not have the same activity. We report the identification of an Arabidopsis flavin-monooxygenase (FMO) enzyme, FMO(GS-OX1), which catalyzes the conversion of methylthioalkyl GSLs into methylsulfinylalkyl GSLs. This is evidenced by biochemical characterization of the recombinant protein, and analyses of the GSL content in FMO(GS-OX1) overexpression lines and an FMO(GS-OX1) knock-out mutant of Arabidopsis. The FMO(GS-OX1) overexpression lines show almost complete conversion of methylthioalkyl into methylsulfinylalkyl GSLs, with an approximately fivefold increase in 4-methylsulfinylbutyl GSL in seeds. Identification of FMO(GS-OX1) provides a molecular tool for breeding of Brassica vegetable crops with increased levels of this important GSL, which has implications for production of functional foods enriched with the cancer-preventive sulforaphane. 相似文献
9.
An active thioglucoside glucohydrolase extract was prepared from commercial mustard powder and its effect on the degradation of two pure glucosinolates was investigated. During reaction in a distilled water medium the pH of the solution decreased markedly and the ratio of products (isothiocyanate and nitrile) varied considerably. After 20–30 min, when the pH had fallen to ca 5.6, isothiocyanate production ceased whilst nitrile continued to be produced and in amounts which increased linearly with time for at least 40 min. This behaviour can be correlated with the changing pH of the medium. In controlled pH experiments it was confirmed that nitrile formation is favoured at lower pH levels and that the ratio of nitrile to isothiocyanate is directly related to the hydrogen ion concentration of the medium. No reason could therefore be found for the observed formation of nitrile in some natural systems at pHs greater than 7. 相似文献
10.
Total concentrations of isothiocyanate-yielding glucosinolates (IYG) were measured in roots, stems, basal leaves and cauline leaves of the herbaceous perennial Cardamine cordifolia (bittercress, Cruciferae), sampled at three sites in the Colorado Rockies during 1981. Significant variation in quantity was partitioned among plant parts, among sampling dates throughout the growing season, and among the three sites. Roots and basal leaves maintained high and similar concentrations of IYG through the season, while cauline leaves and stems showed seasonal declines, associated partly with flowering. Roots also consistently produced oxazolidinethione-yielding glucosinolates (hydroxylated analogues of IYG), whereas above-ground parts were variable for the presence of these compounds. Seasonal and plant-part variability in glucosinolate content and spatial patchiness of glucosinolate phenotypes contribute to the variation in herbivore occurrence and damage documented in previous studies of this native crucifer. 相似文献
11.
Chung-Shih Tang 《Phytochemistry》1973,12(4):769-773
Macerated papaya seeds and pulp contained benzyl isothiocyanate, produced by the enzymatic hydrolysis of benzyl glucosinolate by thioglucosidase. The substrate and enzyme were localized in different areas. In mature papaya seeds, thioglucosidase was found in sarcotestae but not in endosperms, while the reverse was true for benzyl glucosinolate, which constituted more than 6% (w/w) of the endosperms. Both the enzyme and substrate were present in embryos and the amount of the latter was 3·9% (w/w). In immature papaya pulp, benzyl glucosinolate was localized principally, if not exclusively, in the latex, ranging from 7·3 to 11·6% of the dry wt of latex fluid. No thioglucosidase activity was found in papaya latex. The possible significance of the localization of this enzyme-substrate system and aspects concerning functions of papaya latex are discussed. 相似文献
12.
A new sterol isolated from the seeds of Brassica juncea has been shown to be 24-methylene-25-methylcholesterol. 相似文献
13.
14.
Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate 总被引:1,自引:0,他引:1
Cruciferous plants produce a wide variety of glucosinolates as a protection against herbivores and pathogens. However, very little is known about the importance of individual glucosinolates in plant defense and the regulation of their production in response to herbivory. When Myzus persicae (green peach aphid) feeds on Arabidopsis aliphatic glucosinolates pass through the aphid gut intact, but indole glucosinolates are mostly degraded. Although aphid feeding causes an overall decrease in Arabidopsis glucosinolate content, the production of 4-methoxyindol-3-ylmethylglucosinolate is induced. This altered glucosinolate profile is not a systemic plant response, but is limited to the area in which aphids are feeding. Aphid feeding on detached leaves causes a similar change in the glucosinolate profile, demonstrating that glucosinolate transport is not required for the observed changes. Salicylate-mediated signaling has been implicated in other plant responses to aphid feeding. However, analysis of eds5, pad4, npr1 and NahG transgenic Arabidopsis, which are compromised in this pathway, demonstrated that aphid-induced changes in the indole glucosinolate profile were unaffected. The addition of purified indol-3-ylmethylglucosinolate to the petioles of cyp79B2 cyp79B3 mutant leaves, which do not produce indole glucosinolates, showed that this glucosinolate serves as a precursor for the aphid-induced synthesis of 4-methoxyindol-3-ylmethylglucosinolate. In artificial diets, 4-methoxyindol-3-ylmethylglucosinolate is a significantly greater aphid deterrent in the absence of myrosinase than its metabolic precursor indol-3-ylmethylglucosinolate. Together, these results demonstrate that, in response to aphid feeding, Arabidopsis plants convert one indole glucosinolate to another that provides a greater defensive benefit. 相似文献
15.
16.
The effects of pH on the enzymic degradation of benzylglucosinolate in Lepidium sativum seed autolysates were investigated both with and without addition of the enzyme co-factor ascorbic acid. Benzyl cyanide, isothiocyanate, thiocyanate and alcohol were identified in autolysates, although only traces of the alcohol were obtained. The nitrile was always the major product (80% of total glucosinolate products) even at pH 8 and 9 when the usually accepted, proton-dependent mechanism of nitrile production cannot be operative. Thiocyanate was always the second most abundant product. In the absence of added ascorbate, isothiocyanate production decreased with increasing pH, again contrary to accepted theory. L. sativum seeds thus constitute an inherently nitrile-producing system which exhibits ‘anomalous’ glucosinolate degradation. In the absence of added ascorbate, thiocyanate was the only product which was formed in approximately constant amounts, whatever the pH, so its mechanism of production is not necessarily pH-dependent. The presence of added ascorbate in general promoted enzyme activity and showed a maximum effect at ca pH 5, although minimum isothiocyanate formation was observed at that pH. At pH 4 and below, there was less glucosinolate degradation in the presence of added ascorbate than in its absence, and the conclusion is reached that at relatively high acidities the enzyme co-factor behaves as an inhibitor. 相似文献
17.
Concentrations of glucosinolates in the leaves of the woodland cruciferous herbs Dentaria laciniata, D. diphylla and D. maxima declined during the 1974 growing season but generally equalled or exceeded the levels found in the foliage of Brassica nigra, a crucifer of neighbouring open habitats. The superior quality of Dentaria foliage for certain crucifer-feeding insects does not seem to result from an unusually low concentration of glucosinolates. The qualitative and quantitative compositions of glucosinolates in the leaves and rhizomes of D. maxima were found to be intermediate between the corresponding values for D. laciniata and D. diphylla. This finding is consistent with a hybrid origin for D. maxima. 相似文献
18.
19.
Thioglucosidase prepared from rapeseed (Brassica napus cvs Zephyr and Bronowski) showed one major band in polyacrylamide gel and a high susceptibil 相似文献