首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have developed a simple three-step method for transferring oriC mutations from plasmids to the Escherichia coli chromosome. Ten oriC mutations were used to replace the wild-type chromosomal origin of a recBCsbcB host by recombination. The mutations were subsequently transferred to a wild-type host by transduction. oriC mutants with a mutated DnaA box R1 were not obtained, suggesting that R1 is essential for chromosomal origin function. The other mutant strains showed the same growth rates, DNA contents and cell mass as wild-type cells. Mutations in the left half of oriC, in DnaA boxes M, R2 or R3 or in the Fis or IHF binding sites caused moderate asynchrony of the initiation of chromosome replication, as measured by flow cytometry. In mutants with a scrambled DnaA box R4 or with a modified distance between DnaA boxes R3 and R4, initiations were severely asynchronous. Except for oriC14 and oriC21, mutated oriCs could not, or could only poorly, support minichromosome replication, whereas most of them supported chromosome replication, showing that the classical definition of a minimal oriC is not valid for chromosome replication. We present evidence that the functionality of certain mutated oriCs is far better on the chromosome than on a minichromosome.  相似文献   

2.
The requirement of DnaA protein binding for plasmid RK2 replication initiation the Escherichia coli was investigated by constructing mutations in the plasmid replication origin that scrambled or deleted each of the four upstream DnaA boxes. Altered origins were analyzed for replication activity in vivo and in vitro and for binding to the E. coli DnaA protein using a gel mobility shift assay and DNase I footprinting. Most strikingly, a mutation in one of the boxes, box 4, abolished replication activity and eliminated stable DnaA protein binding to all four boxes. Unlike DnaA binding to the E. coli origin, oriC, DnaA binding to two of the boxes (boxes 4 and 3) in the RK2 origin, oriV, is cooperative with box 4 acting as the "organizer" for the formation of the DnaA-oriV nucleoprotein complex. Interestingly, the inversion of box 4 also abolished replication activity, but did not result in a loss of binding to the other boxes. However, DnaA binding to this mutant origin was no longer cooperative. These results demonstrate that the sequence, position, and orientation of box 4 are crucial for cooperative DnaA binding and the formation of a nucleoprotein structure that is functional for the initiation of replication.  相似文献   

3.
Initiation of chromosome replication in Escherichia coli is limited by the initiator protein DnaA associated with ATP. Within the replication origin, binding sites for DnaA associated with ATP or ADP (R boxes) and the DnaAATP specific sites (I-boxes, τ-boxes and 6-mer sites) are found. We analysed chromosome replication of cells carrying mutations in conserved regions of oriC . Cells carrying mutations in DnaA-boxes I2, I3, R2, R3 and R5 as well as FIS and IHF binding sites resembled wild-type cells with respect to origin concentration. Initiation of replication in these mutants occurred in synchrony or with slight asynchrony only. Furthermore, lack of Hda stimulated initiation in all these mutants. The DnaAATP containing complex that leads to initiation can therefore be formed in the absence of several of the origin DnaA binding sites including both DnaAATP specific I-boxes. However, competition between I-box mutant and wild-type origins , revealed a positive role of I-boxes on initiation. On the other hand, mutations affecting DnaA-box R4 were found to be compromised for initiation and could not be augmented by an increase in cellular DnaAATP/DnaAADP ratio. Compared with the sites tested here, R4 therefore seems to contribute to initiation most critically.  相似文献   

4.
5.
C Weigel  A Schmidt  B Rückert  R Lurz    W Messer 《The EMBO journal》1997,16(21):6574-6583
The formation of nucleoprotein complexes between the Escherichia coli initiator protein DnaA and the replication origin oriC was analysed in vitro by band-shift assays and electron microscopy. DnaA protein binds equally well to linear and supercoiled oriC substrates as revealed by analysis of the binding preference to individual DnaA boxes (9-mer repeats) in oriC, and by a competition band-shift assay. DnaA box R4 (oriC positions 260-268) binds DnaA preferentially and in the oriC context with higher affinity than expected from its binding constant. This effect depends on oriC positions 249 to 274, is enhanced by the wild-type sequence in the DnaA box R3 region, but is not dependent on Dam methylation or the curved DNA segment to the right of oriC. DnaA binds randomly to the DnaA boxes R1, M, R2 and R3 in oriC with no apparent cooperativity: the binding preference of DnaA to these sites was not altered for templates with mutated DnaA box R4. In the oriC context, DnaA box R1 binds DnaA with lower affinity than expected from its binding constant, i.e. the affinity is reduced to approximately that of DnaA box R2. Higher protein concentrations were required to observe binding to DnaA box M, making this low-affinity site a novel candidate for a regulatory dnaA box.  相似文献   

6.
The origin of replication of the IncL/M plasmid pMU604 was analyzed to identify sequences important for binding of initiator proteins and origin activity. A thrice repeated sequence motif 5'-NANCYGCAA-3' was identified as the binding site (RepA box) of the initiator protein, RepA. All three copies of the RepA box were required for in vivo activity and binding of RepA to these boxes appeared to be cooperative. A DnaA R box (box 1), located immediately upstream of the RepA boxes, was not required for recruitment of DnaA during initiation of replication by RepA of pMU604 unless a DnaA R box located at the distal end of the origin (box 3) had been inactivated. However, DnaA R box 1 was important for recruitment of DnaA to the origin of replication of pMU604 when the initiator RepA was that from a distantly related plasmid, pMU720. A mutation which scrambled DnaA R boxes 1 and 3 and one which scrambled DnaA R boxes 1, 3 and 4 had much more deleterious effects on initiation by RepA of pMU720 than on initiation by RepA of pMU604. Neither Rep protein could initiate replication from the origin of pMU604 in the absence of DnaA, suggesting that the difference between them might lie in the mechanism of recruitment of DnaA to this origin. DnaA protein enhanced the binding and origin unwinding activities of RepA of pMU604, but appeared unable to bind to a linear DNA fragment bearing the origin of replication of pMU604 in the absence of other proteins.  相似文献   

7.
In Escherichia coli, initiation of chromosome replication requires that DnaA binds to R boxes (9-mer repeats) in oriC, the unique chromosomal replication origin. At the time of initiation, integration host factor (IHF) also binds to a specific site in oriC. IHF stimulates open complex formation by DnaA on supercoiled oriC in cell-free replication systems, but it is unclear whether this stimulation involves specific changes in the oriC nucleoprotein complex. Using dimethylsulphate (DMS) footprinting on supercoiled oriC plasmids, we observed that IHF redistributed prebound DnaA, stimulating binding to sites R2, R3 and R5(M), as well as to three previously unidentified non-R sites with consensus sequence (A/T)G(G/C) (A/T)N(G/C)G(A/T)(A/T)(T/C)A. Redistribution was dependent on IHF binding to its cognate site and also required a functional R4 box. By reducing the DnaA level required to separate DNA strands and trigger initiation of DNA replication at each origin, IHF eliminates competition between strong and weak sites for free DnaA and enhances the precision of initiation synchrony during the cell cycle.  相似文献   

8.
Summary Mutations (base changes) were introduced into the four DnaA binding sites (DnaA boxes) of theEscherichia coli replication origin,oriC. Mutations in a single DnaA box did not impair the ability of these origins to replicate in vivo and in vitro. A combination of mutations in two DnaA boxes, R1 and R4, resulted in slower growth of theoriC plasmid-bearing host cells. DnaA protein interaction with mutant and wild-type DnaA boxes was analyzed by DNase I footprinting. Binding of DnaA protein to a mutated DnaA box R1 was not affected by a mutation in DnaA box R4 and vice versa. Mutations in DnaA boxes R1 and R4 did not modify the ability of the DnaA protein to bind to other DnaA boxes inoriC.  相似文献   

9.
The chromosomal replication origin oriC and the gene encoding the replication initiator protein DnaA from Thermus thermophilus have been identified and cloned into an Escherichia coli vector system. The replication origin is composed of 13 characteristically arranged DnaA boxes, binding sites for the DnaA protein, and an AT-rich stretch, followed by the dnaN gene. The dnaA gene is located upstream of the origin and expresses a typical DnaA protein that follows the division into four domains, as with other members of the DnaA protein family. Here, we report the purification of Thermus-DnaA (Tth-DnaA) and characterize the interaction of the purified protein with the replication origin, with regard to the binding kinetics and stoichiometry of this interaction. Using gel retardation assays, surface plasmon resonance (SPR) and electron microscopy, we show that, unlike the E. coli DnaA, Tth-DnaA does not recognize a single DnaA box, instead a cluster of three tandemly repeated DnaA boxes is the minimal requirement for specific binding. The highest binding affinities are observed with full-length oriC or six clustered, tandemly repeated DnaA boxes. Furthermore, high-affinity DNA-binding of Tth-DnaA is dependent on the presence of ATP. The Thermus DnaA/oriC interaction will be compared with oriC complex formation generated by other DnaA proteins.  相似文献   

10.
Three methods, based on DNA asymmetry, the distribution of DnaA boxes and dnaA gene location, were applied to identify the putative replication origins in 120 chromosomes. The chromosomes were classified according to the agreement of these methods and the applicability of these methods was evaluated. DNA asymmetry is the most universal method of putative oriC identification in bacterial chromosomes, but it should be applied together with other methods to achieve better prediction. The three methods identify the same region as a putative origin in all Bacilli and Clostridia, many Actinobacteria and gamma Proteobacteria. The organization of clusters of DnaA boxes was analysed in detail. For 76 chromosomes, a DNA fragment containing multiple DnaA boxes was identified as a putative origin region. Most bacterial chromosomes exhibit an overrepresentation of DnaA boxes; many of them contain at least two clusters of DnaA boxes in the vicinity of the oriC region. The additional clusters of DnaA boxes are probably involved in controlling replication initiation. Surprisingly, the characteristic features of the initiation of replication, i.e. a cluster of DnaA boxes, a dnaA gene and a switch in asymmetry, were not found in some of the analysed chromosomes, particularly those of obligatory intracellular parasites or endosymbionts. This is presumably connected with many mechanisms disturbing DNA asymmetry, translocation or disappearance of the dnaA gene and decay of the Escherichia coli perfect DnaA box pattern.  相似文献   

11.
The initiator protein DnaA of Escherichia coli binds with unusually high affinity to five regions on the chromosome, in addition to the replication origin, oriC . Using a solid-phase DNA binding assay, in which the DNA binding C-terminal domain of DnaA is bound via a biotin tag to magnetic beads, we could fish only fragments with these six regions from different chromosomal digests. Except for oriC , these fragments contain only one or two consensus DnaA binding sites, DnaA boxes. The distribution of these high-affinity DnaA boxes on the chromosome is random.  相似文献   

12.
The binding of DnaA protein to its DNA binding sites-DnaA boxes-in the chromosomal oriC region is essential for initiation of chromosome replication. In this report, we show that additional DnaA boxes affect chromosome initiation control, i.e., increase the initiation mass. The cellular DnaA box concentration was increased by introducing pBR322-derived plasmids carrying DnaA boxes from the oriC region into Escherichia coli and by growing the strains at different generation times to obtain different plasmid copy numbers. In fast-growing cells, where the DnaA box plasmid copy number per oriC locus was low, the presence of extra DnaA boxes caused only a moderate increase in the initiation mass. In slowly growing cells, where the DnaA box plasmid copy number per oriC locus was higher, we observed more pronounced increases in the initiation mass. Our data clearly show that the presence of extra DnaA boxes increases the initiation mass, supporting the idea that the initiation mass is determined by the normal complement of DnaA protein binding sites in E. coli cells.  相似文献   

13.
In Streptomyces coelicolor, replication is initiated by the DnaA protein in the centrally located oriC region and proceeds bidirectionally until the replication forks reach the ends of the linear chromosome. We identified three clusters of DnaA boxes (H69, H24, and D78) which are in a relatively short segment of the chromosome centered on the oriC region. Of the clusters analyzed, D78 exhibited the highest affinity for the DnaA protein; the affinity of DnaA for the D78 cluster was about eightfold higher than the affinity for oriC. The high-affinity DnaA boxes appear to be involved in the control of chromosome replication. Deletion of D78 resulted in more frequent chromosome replication (an elevated ratio of origins to chromosome ends was observed) and activated aerial mycelium formation, leading to earlier colony maturation. In contrast, extra copies of D78 (delivered on a plasmid) caused slow colony growth, presumably because of a reduction in the frequency of initiation of chromosome replication. This suggests that the number of high-affinity DnaA boxes is relatively constant in hyphal compartments and that deletion of D78 therefore permits an increased copy number of either the chromosomal origin region or a plasmid harboring the D78 cluster. This system conceivably influences the timing of decisions to initiate aerial mycelial formation and sporulation.  相似文献   

14.
The Escherichia coli chromosomal origin contains several bindings sites for factor for inversion stimulation (FIS), a protein originally identified to be required for DNA inversion by the Hin and Gin recombinases. The primary FIS binding site is close to two central DnaA boxes that are bound by DnaA protein to initiate chromosomal replication. Because of the close proximity of this FIS site to the two DnaA boxes, we performed in situ footprinting with 1, 10-phenanthroline-copper of complexes formed with FIS and DnaA protein that were separated by native gel electrophoresis. These studies show that the binding of FIS to the primary FIS site did not block the binding of DnaA protein to DnaA boxes R2 and R3. Also, FIS appeared to be bound more stably to oriC than DnaA protein, as deduced by its reduced rate of dissociation from a restriction fragment containing oriC . Under conditions in which FIS was stably bound to the primary FIS site, it did not inhibit oriC plasmid replication in reconstituted replication systems. Inhibition, observed only at high levels of FIS, was due to absorption by FIS binding of the negative superhelicity of the oriC plasmid that is essential for the initiation process.  相似文献   

15.
A dnaA 'null' strain could not support replication of intact plasmid R6K or derivatives containing combinations of its three replication origins (alpha, gamma, beta). DnaA binds in vitro to sites in two functionally distinct segments of the central gamma origin. The 277-bp core segment is common to all three origins and contains DnaA box 2, which cannot be deleted without preventing replication. Immediately to the left of the core lies the 106-bp origin enhancer, which contains DnaA box 1. When the origin enhancer is deleted, the core alone can still initiate replication if levels of wt pi protein are decreased or if copy-up pi mutant proteins are provided in trans. DnaA does not effect expression of R6K replication initiator protein pi, although several DnaA boxes were identified in the coding segment of the pir gene, which encodes pi. Together these data suggest that a single DnaA box, 2, is sufficient for initiation from the gamma origin and might be sufficient for initiation from the gamma origin and might be sufficient and required for the activity of the alpha and beta origins as well. Implications of the DnaA protein binding to two domains of the gamma origin and the role of the 106-bp origin enhancer in replication are discussed.  相似文献   

16.
The Escherichia coli dnaA73, dnaA721, and dnaA71 alleles, which encode A213D, R432L, T435K substitutions, respectively, were originally isolated as extragenic suppressors of a temperature-sensitive dnaX mutant. As the A213D substitution resides in a domain that functions in ATP binding and the R432L and T435K substitutions affect residues that recognize the DnaA box motif, they might be expected to reduce ATP and specific DNA binding, respectively. Therefore, a major objective was to quantify the biochemical defects of the mutant DnaAs to understand how the altered proteins suppress the temperature-sensitive phenotype of a dnaX mutant. A second purpose was to address the paradox that mutant proteins with substitutions of amino acids essential for recognition of the DnaA box motifs within the E. coli replication origin (oriC) may well be inactive in initiation, yet chromosomal dnaA mutants expressing DnaA proteins with the R432L and T435K substitutions are viable at temperatures from 30 to 39 degrees C. We show biochemically that mutant DnaAs carrying R432L and T435K substitutions fail to bind to the DnaA box sequence. The A213D mutant is sevenfold reduced in its affinity for ATP compared to wild-type DnaA, and its affinity for the DnaA box sequence is also reduced. However, the reduced activity of the A213D mutant in oriC plasmid replication appears to arise from a defect in DnaA oligomerization. Although the T435K mutant fails to bind to the DnaA box sequence, other results suggest that DnaA oligomerization stabilizes the binding of the mutant DnaA to oriC to support its partial activity in initiation in vitro. These results support a model that suppression of dnaX occurs by reducing the frequency of initiation to a manageable level for the mutant DnaX so that viability is maintained.  相似文献   

17.
Escherichia coli DnaA protein, a member of the AAA+ superfamily, initiates replication from the chromosomal origin oriC in an ATP-dependent manner. Nucleoprotein complex formed on oriC with the ATP-DnaA multimer but not the ADP-DnaA multimer is competent to unwind the oriC duplex. The oriC region contains ATP-DnaA-specific binding sites termed I2 and I3, which stimulate ATP-DnaA-dependent oriC unwinding. In this study, we show that the DnaA R285A mutant is inactive for oriC replication in vivo and in vitro and that the mutation is associated with specific defects in oriC unwinding. In contrast, activities of DnaA R285A are sustained in binding to the typical DnaA boxes and to ATP and ADP, formation of multimeric complexes on oriC, and loading of the DnaB helicase onto single-stranded DNA. Footprint analysis of the DnaA-oriC complex reveals that the ATP form of DnaA R285A does not interact with ATP-DnaA-specific binding sites such as the I sites. A subgroup of DnaA molecules in the oriC complex must contain the Arg-285 residue for initiation. Sequence and structural analyses suggest that the DnaA Arg-285 residue is an arginine finger, an AAA+ family-specific motif that recognizes ATP bound to an adjacent subunit in a multimeric complex. In the context of these and previous results, the DnaA Arg-285 residue is proposed to play a unique role in the ATP-dependent conformational activation of an initial complex by recognizing ATP bound to DnaA and by modulating the structure of the DnaA multimer to allow interaction with ATP-DnaA-specific binding sites in the complex.  相似文献   

18.
Oligomerization of the initiator protein, DnaA, on the origin of replication (oriC) is crucial for initiation of DNA replication. Studies in Escherichia coli (Gram-negative) have revealed that binding of DnaA to ATP, but not hydrolysis of ATP, is sufficient to promote DnaA binding, oligomerization and DNA strand separation. To begin understanding the initial events involved in the initiation of DNA replication in Mycobacterium tuberculosis (Gram-positive), we investigated interactions of M. tuberculosis DnaA (DnaA(TB)) with oriC using surface plasmon resonance in the presence of ATP and ADP. We provide evidence that, in contrast to what is observed in E. coli, ATPase activity of DnaA(TB) promoted rapid oligomerization on oriC. In support, we found that a recombinant mutant DnaA(TB) proficient in binding to ATP, but deficient in ATPase activity, did not oligomerize as rapidly. The corresponding mutation in the dnaA gene of M. tuberculosis resulted in non-viability, presumably due to a defect in oriC-DnaA interactions. Dimethy sulphate (DMS) footprinting experiments revealed that DnaA(TB) bound to DnaA boxes similarly with ATP or ADP. DnaA(TB) binding to individual DnaA boxes revealed that rapid oligomerization on oriC is triggered only after the initial interaction of DnaA with individual DnaA boxes. We propose that ATPase activity enables the DnaA protomers on oriC to rapidly form oligomeric complexes competent for replication initiation.  相似文献   

19.
Speck C  Messer W 《The EMBO journal》2001,20(6):1469-1476
The initiator protein DnaA of Escherichia coli binds to a 9mer consensus sequence, the DnaA box (5'-TT(A/T)TNCACA). If complexed with ATP it adopts a new binding specificity for a 6mer consensus sequence, the ATP-DnaA box (5'-AGatct). Using DNase footprinting and surface plasmon resonance we show that binding to ATP-DnaA boxes in the AT-rich region of oriC of E.coli requires binding to the 9mer DnaA box R1. Cooperative binding of ATP-DnaA to the AT-rich region results in its unwinding. ATP-DnaA subsequently binds to the single-stranded region, thereby stabilizing it. This demonstrates an additional binding specificity of DnaA protein to single-stranded ATP-DnaA boxes. Binding affinities, as judged by the DnaA concentrations required for site protection in footprinting, were approximately 1 nM for DnaA box R1, 400 nM for double-stranded ATP-DnaA boxes and 40 nM for single-stranded ATP-DnaA boxes, respectively. We propose that sequential recognition of high- and low-affinity sites, and binding to single-stranded origin DNA may be general properties of initiator proteins in initiation complexes.  相似文献   

20.
We have developed a genetic system with which to replace oriC+ on the Escherichia coli chromosome with modified oriC sequences constructed on plasmids. Using this system we have demonstrated that chromosomal oriC can tolerate the insertion of a 2 kb fragment at the HindIII site between DnaA boxes R3 and R4, whereas the same insertion completely inactivates cloned oriC. We have further found that although R4 is essential for the origin activity of cloned oriC, cells carrying a deletion of R4 in chromosomal oriC are viable. These results indicate that the oriC sequence necessary for initiation of chromosome replication is different from the so-called minimal oriC that was determined with cloned oriC. Flow cytometric analyses have revealed that these oriC mutations confer the initiation asynchrony phenotype. Introduction of the R4 deletion into a fis::kan mutant, which lacks the DNA bending protein FIS, renders the mutant cells inviable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号