首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several lines of evidence suggest that increased neuraminidase activity may be responsible for the loss of glomerular N-acetylneuraminic acid (AcNeu) observed in various glomerular diseases. However, virtually no information is available on the activity of neuraminidase in glomeruli or the potential role of this enzyme in glomerular pathophysiology. Utilizing 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid (4MU-AcNeu) as substrate, we defined optimal assay conditions and characterized neuraminidase activity in glomeruli and, for comparison, in other renal fractions and liver. Neuraminidase activity in glomeruli, cortex and tubules was maximal at pH 4.4. The Km for 4MU-AcNeu was estimated to be 195 microM for glomeruli and 226 microM for cortex. Glomerular neuraminidase was inhibited by AcNeu (90% at 25 mM) and high concentrations of Triton X-100 (26% at 0.5%), but unaffected by CaCl2, EDTA or N-ethylmaleimide (each 1 mM). Neuraminidase activity (nmol/h per mg of protein; mean +/- S.E.M.) in normal rat kidney was: cortex, 14.47 +/- 0.76; medulla, 7.85 +/- 0.64; papilla, 2.64 +/- 0.11; tubules, 13.79 +/- 0.70; glomeruli, 5.57 +/- 0.28. In comparison, neuraminidase activity in rat liver was 2.58 +/- 0.14. Puromycin aminonucleoside (PAN)-induced nephrotic syndrome is a model of glomerular disease in which the loss of glomerular AcNeu is well documented. In two separate studies, we observed no change in the specific activity of neuraminidase in either glomeruli or cortex isolated from rats treated with PAN (15 mg/100 g, intraperitoneally) and killed at either the onset or the peak of proteinuria. Results were similar whether neuraminidase activity was expressed per mg of protein or per microgram of DNA.  相似文献   

2.
S-adenosylhomocysteine (SAH) hydrolase is a cytosolic enzyme present in the kidney. Enzyme activities of SAH hydrolase were measured in the kidney in isolated glomeruli and tubules. SAH hydrolase activity was 0.62 +/- 0.02 mU/mg in the kidney, 0.32 +/- 0.03 mU/mg in the glomeruli, and 0.50 +/- 0.02 mU/mg in isolated tubules. Using immunohistochemical methods, we describe the localization of the enzyme SAH hydrolase in rat kidney with a highly specific antibody raised in rabbits against purified SAH hydrolase from bovine kidney. This antibody crossreacts to almost the same extent with the SAH hydrolase from different species such as rat, pig, and human. Using light microscopy, SAH hydrolase was visualized by the biotin-streptavidin-alkaline phosphatase immunohistochemical procedure. SAH hydrolase immunostaining was observed in glomeruli and in the epithelium of the proximal and distal tubules. The collecting ducts of the cortex and medulla were homogeneously stained. By using double immunofluorescence staining and two-channel immunofluorescence confocal laser scanning microscopy, we differentiated the glomerular cells (endothelium, mesangium, podocytes) and found intensive staining of podocytes. Our results show that the enzyme SAH hydrolase is found ubiquitously in the rat kidney. The prominent staining of SAH hydrolase in the podocytes may reflect high rates of transmethylation. (J Histochem Cytochem 48:211-218, 2000)  相似文献   

3.
Polyclonal anti-BADH serum was raised in rabbits against native BADH purified from porcine kidney. The antiserum cross-reacted strongly with BADH purified from kidney, Amaranthus palmierii, and Pseudomona aeuroginosa (1:1000), and weakly with Amaranthus hypochondriacus L (1:100). Antibodies bound to purified native kidney BADH in immunoblots showed a major band of an apparent molecular mass of 340 kDa and a subunit with an apparent molecular mass of 52 kDa. Data on activity assays showed higher activity in cortex sections (81.3 nmol/min/mg protein) than in medulla sections (21.3 nmol/min/mg protein). Immunolocalization of BADH in kidney tissue sections showed that BADH is found in cortex and medulla. In inner medulla, the enzyme was mainly localized in cells surrounding the tubules. Western blot analysis on extracts from the cortex and medulla sections showed higher concentration of BADH protein in cortex than in medulla. These results were in accordance with immunolocalization and activity analysis.  相似文献   

4.
G(s alpha)-, total G(i alpha)- and G(q/11alpha)-protein concentrations were investigated by quantitative immunoblotting in membranes of total kidney, renal cortex and medulla as well as in cortical tubules and glomeruli of Spontaneously Hypertensive Rats (SHR) and normotensive Wistar Kyoto rats (WKY), aged 5 weeks, 3 or 8 months. We found that total kidney of 5 week old SHR possess less G(s alpha)-, G(i alpha)- and G(q/11alpha)-proteins than controls. For G(s alpha)-proteins, differences found in total kidney were mirrored both in cortex (tubules and glomeruli) and in medulla. Decreased G(i alpha)-concentrations were accompanied by lower tubular but higher glomerular levels, while medullar levels were also increased. Decreased G(q/11alpha)-concentrations were reflected in decreased glomerular and medullary concentrations. Kidneys of 3 month old SHR and WKY possessed similar concentrations of all G(alpha)-species. In 8 month old SHR similar G(i alpha)-, but decreased G(s alpha)-and G(q/11alpha)-concentrations were observed. The G(s alpha)-decrease was reflected in cortex and medulla, the G(q/11alpha)-decrease in the medulla. We conclude that the main strain-related differences in G(alpha)-concentrations are seen in prehypertensive SHR.  相似文献   

5.
The distribution of VIP binding sites in rat kidney and adrenal gland has been examined by light microscopic autoradiography. A fully characterized mono-iodinated molecular form of VIP (M-125-I-VIP) which maintains the biological activity of the native peptide, was used for this study. Two types of VIP binding sites, with high and low affinity, have been identified. High affinity sites are associated with (i) glomerular structures in the cortex, (ii) the inner stripe of the outer medulla, possibly corresponding to Henle's loops and distal tubules, (iii) radiated structures in the inner zone of the medulla, likely to represent labeling of collecting ducts and/or vascular bundles and (iv) the adrenal cortex. Autoradiographic grains associated with low affinity sites are present diffusely throughout the renal cortex, possibly corresponding to labeling of tubular and/or vascular structures, and throughout the adrenal gland. These observations further delineate a role of VIP in renal and neuroendocrine function.  相似文献   

6.
Regional distribution of angiotensin converting enzyme(ACE) in the rat kidney was studied. The ACE activities in the inner cortex and outer medulla were about 10 and 5 times those in the outer cortex, respectively. The activity in the inner medulla or papilla was much the same as that in the outer cortex. Immunofluorescence was greatest in the proximal tubules in the inner cortex, while the outer medulla and the inner medulla or papilla showed a weak fluorescence. The brush border membranes isolated from the inner cortex also possessed about 10 times the ACE activity seen in the outer cortex. The results indicate that the major source of renal ACE is not the proximal convoluted tubules in the outer cortex, but rather the brush border membranes of proximal tubules in the inner cortex. The contribution of ACE in the inner cortex would therefore be predominant.  相似文献   

7.
We examined the possibility that renal glomerular and cortical tubular tissue has lipoxygenase activity in addition to the well established cyclo-oxygenase pathway of arachidonic acid metabolism. Homogenized rat kidney glomeruli, in the presence of meclofenamate (33 microM) and divalent cation ionophore A23187 (3 microM), metabolized octatritiated arachidonic acid to 12-hydroxyeicosatetraenoic acid and lesser amounts of 80 and/or 9-hydroxyeicosatetraenoic acid. These products were identified by thin layer chromatography, high performance liquid chromatography, and gas chromatography-mass spectroscopy. In order to rule out the synthesis of hydroxylated fatty acids by platelets and leukocytes entrapped in the glomeruli, we studied lipoxygenase products in glomerular epithelial cells after 9 days in cell culture. Homogenized glomerular epithelial cells converted octatritiated arachidonic acid to 12-hydroxyeicosatetraenoic acid solely. The lipoxygenase activity in cortical tubules was substantially less than in glomeruli and only 12-hydroxyeicosatetraenoic acid was synthesized. The production of hydroxyeicosatetraenoic acid by lipoxygenase inhibitors, nordihydroguaiaretic acid, 5,-homogenized glomeruli, glomerular epithelial cells, and cortical tubules was inhibited by three 8,11,14-eicosatetraynoic acid, and 1-phenyl-3-pyrazolidone. These data demonstrate that there is lipoxygenase activity in rat kidney glomeruli, glomerular epithelial cells and to a lesser extent cortical tubules, and may imply a role of the lipoxygenase products in the regulation of normal glomerular function and inflammatory disease of the kidney.  相似文献   

8.
This study was designed to investigate the effects of moderate zinc deficiency during growth on renal morphology and function in adult life. Weaned male Wistar rats were divided into two groups and fed either a moderately zinc-deficient diet (zinc: 8 mg/kg, n=12) or a control diet (zinc: 30 mg/kg, n=12) for 60 days. We evaluated: renal parameters, NADPH-diaphorase and nitric oxide synthase activity in kidney, renal morphology and apoptotic cells in renal cortex. Zinc-deficient rats showed a decrease in glomerular filtration rate and no changes in sodium and potassium urinary excretion. Zinc deficiency decreased NADPH diaphorase activity in glomeruli and tubular segment of nephrons, and reduced activity of nitric oxide synthase in the renal medulla and cortex, showing that zinc plays an important role in preservation of the renal nitric oxide system. A reduction in nephron number, glomerular capillary area and number of glomerular nuclei in cortical and juxtamedullary areas was observed in zinc deficient kidneys. Sirius red staining and immunostaining for alpha-smooth muscle-actin and collagen III showed no signs of fibrosis in the renal cortex and medulla. An increase in the number of apoptotic cells in distal tubules and cortical collecting ducts neighboring glomeruli and, to a lesser extent, in the glomeruli was observed in zinc deficient rats. The major finding of our study is the emergence of moderate zinc deficiency during growth as a potential nutritional factor related to abnormalities in renal morphology and function that facilitates the development of cardiovascular and renal diseases in adult life.  相似文献   

9.
Male and female mice at 0-120 days of age were used. Homogenates of kidneys were incubated with [14C]4-androstene-3,17-dione, and 17 alpha-oxidoreductase activity per g tissue was examined. The activities of 17 alpha-oxidoreductase in the kidneys of both sexes increased markedly with age during sexual development by up to 150-fold and reached the maximum values (2700 and 1500 nmol/g/h in male and female kidneys, respectively) at 60 days of age. In the adult male mouse kidney, the activity in isolated cortex fractions was 14 times as high as the activity in isolated medulla fractions; in the medulla fractions renal tubules from the cortex accounted for 3-15% of the total tissue. Furthermore, histochemical examination showed the activity present only in the cortex, at which much higher levels in the tubules than in the glomerulus. Activity at 35-120 days of age was significantly higher in male kidneys than in female kidneys. The difference appears to be induced by testicular androgens during sexual development, since neonatal castration in males resulted in decreases of activity to levels similar to those in female kidneys. However, castration at 60 days of age showed no significant effect on the activity. The present results show that the activity per g tissue of 17 alpha-oxidoreductase in the mouse kidney increases markedly with age, and that the activity is largely confined to the renal tubules of the cortex.  相似文献   

10.
Kidneys of normal female and male Wistar-Kyoto rats were studied by standard morphological techniques and morphometry in order to evaluate possible differences in the overall kidney morphology between both sexes. Furthermore, we investigated the role of testosterone (DHT) on kidney morphology by treating females with daily DHT injections. Kidney weight and volume in relation to body weight were not significantly different between males and females and were not affected by DHT. Differences were found in the volume distribution among the kidney zones. The cortex was larger in males than in females, whereas the medulla was conspicuously larger in females than in males. The greater volume of the cortex in males was mainly due to a more extensive development of proximal tubules. DHT treatment in females increased the volume of their proximal tubules. Glomerular volume was similar among the three groups. Within the medulla, the difference was most prominent in the inner stripe (14.9% of the total kidney volume in females vs. 8.9% in males) and was also important in the inner medulla (7.0 vs. 4.8%). The absolute epithelial volume of thick ascending limbs in this zone was larger in females than in males. This difference was more pronounced in short loops (approximately 20%) than in long loops (approximately 10%). The values of the DHT-treated females ranged in between. In spite of the greater development of medulla and thick ascending limbs in females, urine concentration was higher in males than in females and maximum urinary concentrating ability after 48 h dehydration was not different between both sexes.  相似文献   

11.
This study is aimed both at characterizing an ATPase activity in rat kidney equivalent to the proton pump described in bovine kidney medulla and at localizing this enzyme along the nephron. Membrane fractions isolated from kidney homogenates by differential and density gradient centrifugations were enriched 7-fold in ATPase activity sensitive to N-ethylmaleimide (NEM). These fractions also displayed ATP-dependent proton transport. ATPase activity and proton transport in vesicles had similar pharmacological properties as both were insensitive to vanadate and ouabain and had similar sensitivities toward NEM (apparent Ki = 20 microM) and N,N'-dicyclohexylcarbodiimide (apparent Ki = 50 microM). Proton transport was dependent on chloride availability as chloride addition to the extravesicular medium stimulated proton transport in a dose-dependent fashion (apparent K 1/2 = 7 mM). NEM-sensitive ATPase activity displaying similar pharmacological properties as proton transport in vesicles was also found in single segments of nephron. It was insensitive to vanadate and ouabain, was inhibited by similar concentrations of NEM (apparent Ki = 15-20 microM) and N,N'-dicyclohexylcarbodiimide (apparent Ki = 30 microM), and is therefore likely to be a proton pump. NEM-sensitive ATPase was localized in all the segments of the rat nephron; its activity was highest in proximal convoluted tubules; intermediate in proximal straight tubules, thick ascending limbs, and cortical collecting tubules; and lowest in outer medullary collecting tubules.  相似文献   

12.
We have examined the activity and distribution of cathepsin D (EC 3.4.23.5), a major renal lysosomal endoproteinase, in the various anatomical and functional areas of normal rat kidney. Cathepsin D-like activities (delta A280/h per mg of protein) in normal rat tissues were: cortex, 0.78 +/- 0.05, n = 37; medulla, 0.62 +/- 0.03, n = 12; papilla, 0.63 +/- 0.04, n = 12; tubules, 0.74 +/- 0.04, n = 28; glomeruli, 0.59 +/- 0.03, n = 28; and liver, 0.41 +/- 0.02, n = 28. Enzyme activity was maximal at pH 3.0-3.5 and inhibited more than 90% by pepstatin (6.7 micrograms/ml), suggesting that the enzyme is cathepsin D. In subsequent experiments we measured cathepsin D-like activity in cortex, tubules and glomeruli isolated from rats with puromycin aminonucleoside (PAN)-induced nephrotic syndrome. Treated animals (15 mg of PAN/100g body wt., intraperitoneally) developed proteinuria beginning 4 days after injection and exceeding 900 mg/24h on day 9. In two separate experiments involving 52 animals we observed a significant increase in cathepsin D-like activity in cortex (+82.7%), tubules (+109.6%) and glomeruli (+54.7%) isolated from PAN-treated rats killed during marked proteinuria (day 9, mean total urinary protein excretion: 937 +/- 94 mg/24h). This increase was observed whether the activity was expressed per mg of DNA or per mg of protein. Increased cathepsin D-like activity was first observed in cortex and tubules coincident with the onset of proteinurea (day 4, mean total urinary protein excretion: 112 +/- 23 mg/24h). In contrast with the significant elevation of renal cathepsin D-like activity, the activity (nmol/h per mg of protein) of alpha-L-fucosidase (EC 3.2.1.51), a non-proteolytic enzyme, was markedly decreased in the identical samples used for the measurement of cathepsin D-like activity: cortex (-46.4%); tubules (-46.1%); and glomeruli (-38.5%). In addition to changes in renal enzyme activities, PAN-treated rats excreted large amounts of cathepsin D-like activity in their urine (beginning on day 3) compared with nearly undetectable cathepsin D-like activity in the urine from control rats. The significant increases in glomerular and tubular cathepsin D activity may reflect an important role for this enzyme in the pathophysiology associated with PAN-induced nephrotic syndrome.  相似文献   

13.
Salamanders possess kidneys with two distinct regions: a caudal pelvic portion and cranial genital portion. Nephrons of the pelvic region are responsible for urine formation and transport. Nephrons of the genital region transport sperm from testes to Wolffian ducts; however, nephrons of the genital region possess all the same functional regions found in pelvic kidney nephrons that are involved with urine formation and transport (renal corpuscles, proximal tubules, distal tubules, and collecting ducts). Morphological similarities between pelvic and genital regions stimulated past researchers to hypothesize that nephrons of genital kidneys possess dual function; that is, sperm transport and urine formation/transport. Considering size of glomeruli is directly related to the total amount of blood plasma filtered into the Bowman's space, we tested the hypothesis that nephrons of genital kidneys have reduced urine formation function by comparing glomerular size between nephrons of pelvic and genital kidney regions in Eurycea longicauda with general histological techniques. Light microscopy analysis revealed that glomeruli of pelvic kidneys were significantly larger than those measured from genital kidneys. Transmission electron microscopy analysis also revealed modifications in genital kidney nephrons when compared to pelvic kidney nephrons that suggested a decrease in urine formation function in genital kidneys. Such modifications included a decrease in basal and lateral plasma membrane folding in genital kidney proximal and distal tubules compared to that of pelvic kidney proximal and distal tubules. Genital kidney proximal tubules were also ciliated, which was not observed in pelvic kidney proximal tubules. In conclusion, although structurally similar at the histological level, it appears that nephrons of genital kidneys have decreased urine formation function based on glomerular size comparison and nephron ultrastructure.  相似文献   

14.
To investigate regional aspects of hypoxic regulation of adrenomedullin (AM) in kidneys, we mapped the distribution of AM in the rat kidney after hypoxia (normobaric hypoxic hypoxia, carbon monoxide, and CoCl(2) for 6 h), anemia (hematocrit lowered by bleeding) and after global transient ischemia for 1 h (unilateral renal artery occlusion and reperfusion for 6 and 24 h) and segmental infarct (6 and 24 h). AM expression and localization was determined in normal human kidneys and in kidneys with arterial stenosis. Hypoxia stimulated AM mRNA expression significantly in rat inner medulla (CO 13 times, 8% O(2) 6 times, and CoCl(2) 8 times), followed by the outer medulla and cortex. AM mRNA level was significantly elevated in response to anemia and occlusion-reperfusion. Immunoreactive AM was associated with the thin limbs of Henle's loop, distal convoluted tubule, collecting ducts, papilla surface epithelium, and urothelium. AM labeling was prominent in the inner medulla after CO and in the outer medulla after occlusion-reperfusion. The infarct border zone was strongly labeled for AM. In cultured inner medullary collecting duct cells, AM mRNA was significantly increased by hypoxia. AM mRNA was equally distributed in human kidney and AM was localized as in the rat kidney. In human kidneys with artery stenosis, AM mRNA was not significantly enhanced compared with controls, but AM immunoreactivity was observed in tubules, vessels, and glomerular cells. In summary, AM expression was increased in the rat kidney in response to hypoxic and ischemic hypoxia in keeping with oxygen gradients. AM was widely distributed in the human kidney with arterial stenosis. AM may play a significant role to counteract hypoxia in the kidney.  相似文献   

15.
To determine the localization of T4 5'-monodeiodinase activity in rabbit and rat nephron segments, the formation of tri-iodothyronine (T3) from thyroxine (T4) was measured in kidney homogenate and in isolated nephron segments obtained by the microdissection method. In order of decreasing activity, homogenates of rabbit renal cortex, outer medulla and inner medulla were capable of converting T4 to T3. In the isolated nephron segments of the rabbit cortex, the activities were noted in both proximal convoluted and proximal straight tubules. On the other hand, the activities were not detected in segments including the cortical thick ascending limb of Henle's loop, the distal convoluted tubule, the connecting tubule, and the cortical collecting tubule. It is concluded that both the convoluted and the straight tubules are the sites of T3 production in the kidney.  相似文献   

16.
1. The localisation and some of the properties of rabbit kidney cortex guanylate cyclase (GTP pyrophosphatase lyase (cyclizing) EC 4.6.1.2) have been studied. Upon fractionation of dissociated renal cortex, guanylate cyclase activity was preferentially enriched in fractions of pure glomeruli, where its specific activity was 44.5 times that measured in tubular fragments. Most, if not all, of the glomerular activity was found to be firmly membrane-bound, whereas the guanylate cyclase activity of the tubules was mainly soluble. Therefore, particulate guanylate cyclase activity could serve as marker enzyme for kidney glomeruli. 2. All hormones or hormone-like agents tested were without effect on kidney guanylate cyclase activity. Triton X-100 stimulated both glomerular and tubular activity. 3. Considering the high cyclic GMP forming capacity of kidney glomeruli, part of the cyclic GMP found in urine might be synthetized locally in these structures.  相似文献   

17.
Creatine kinase enzymes are present in tissues such as muscle and brain to interconvert creatine phosphate and ADP, thus providing a system to interconnect energy production and utilization (Bessman, S. P., and Carpenter, C. L. (1985) Annu. Rev. Biochem. 54, 831-862). Creatine kinase isoenzymes in kidney have received little attention since kidney contains relatively low creatine kinase activity compared with muscle and brain and because there is disagreement regarding the identity of the specific isoforms expressed in kidney. Using a combination of chromatographic and immunological techniques, we have identified two isoforms of creatine kinase in rat kidney supernatants, B creatine kinase, and the non-sarcomeric form of the mitochondrial creatine kinase, which represent 82 and 15%, respectively, of the total creatine kinase activity in this tissue. The identity of the non-muscle form of the mitochondrial creatine kinase was confirmed by N-terminal sequence analysis and compared with recently published cDNA sequences (Haas, R. C., and Strauss, A. W. (1990) J. Biol. Chem. 265, 6921-6927). We prepared multiple antisera specific for each isoform using synthetic peptide immunogens based upon nonhomologous regions from the primary sequence of each creatine kinase isoform. Immunocytochemical results demonstrate that both creatine kinase isoforms are colocalized in the inner stripe of the outer medulla in tubules of the distal nephron. A similar distribution of creatine kinase isoforms was obtained when different layers of the renal cortex and medulla were examined for creatine kinase activity and isozyme content using nondenaturing electrophoresis. In general, the distribution of creatine kinase enzymes in kidney corresponds to the regions of greatest ATP utilization, oxygen consumption, and sodium transport. These results suggest a role for creatine kinase enzymes in the coupling of ion transport and oxidative phosphorylation in the distal nephron of the mammalian kidney.  相似文献   

18.
A monoclonal antibody IgG, has been raised against ecto-5'-nucleotidase purified from rat kidney homogenate. The specificity of the antibody was verified by immunoprecipitation. The distribution of the corresponding antigen in the rat kidney was studied by immunocytochemistry (FITC and PAP technique) in 1 micron thick cryostat sections. The antibody reacted with the brush border of proximal tubules, the apical cell membrane and the apical cytoplasm of intercalated cells in connecting tubules and collecting ducts and with interstitial cells of the cortex. Among the interstitial cells exclusively stellate shaped fibroblasts were reactive whereas rounded interstitial cells (type II interstitial cells) as well as pericytes and endothelial cells of peritubular capillaries were unreactive. Compared to the staining intensity of the fibroblasts in the cortical labyrinth the reactivity of the fibroblasts in the medullary rays of the cortex was weak or absent. Interstitial cells of the entire medulla were unreactive. Concerning the fibroblasts in the periarterial connective tissue, those surrounding the larger arteries (arcuate arteries, cortical radial arteries) were negative, those alongside afferent and efferent arterioles were positive. Endothelia of lymphatic capillaries travelling within the periarterial connective tissue were also positive. All components of the juxtaglomerular apparatus were negative. The findings are consistent with an interstitial production of adenosine, available extracellularly and thus being able to reach the major target sites of adenosine, the smooth muscles of glomerular arterioles, including the granular cells at the glomerular vascular pole.  相似文献   

19.
The sorbitol pathway catalyzes the conversion of glucose to fructose via the intermediate sorbitol. It consists of aldose reductase (AR) and sorbitol dehydrogenase (SDH). In adult (44 day) kidney zones, AR was highest in the outer medulla. In substructures AR was highest in distal convoluted tubule. The AR was greatest in newborn and 8-day zones of developing rat kidney. Acute alloxan diabetes was associated with decreased AR in small arteries, but not glomeruli. The SDH was lowest in outer medulla. It was most active in glomeruli and distal convoluted tubules. The diabetic state leads to no change of SDH in arteries but an increase in glomeruli. SDH increased with development. This study demonstrates AR and SDH in substructures of the kidney. The pathway is present in developing kidney. In diabetes the enzymatic changes would tend to decrease accumulation of sorbitol.  相似文献   

20.
The kidney of Diceros bicornis has about 60 lobes, all appearing peripherally. These are separated by interlobar septa, except for small septal defects through which tubules pass. Renal capsule and interlobar septa are fibromuscular and contain small blood vessels. The kidney is about 65% cortex. It contains about 12.5 x 10(6) glomeruli, which form about 7% of the cortical mass and 4.6% of the renal mass. Diameter of a glomerular capsule is about 244 microns, there being no difference in size across the cortex in these adults. The ureter bifurcates into a cephalic and a caudal, fibromuscular, urothelial-lined conduit, into which open about 23 urothelial-lined infundibula. The common large collecting duct, or tubus maximus, of every lobe opens at the apex of its infundibulum. Two tubi may join into one infundibulum. The tubi and their terminal collecting ducts (of Bellini) are part of the inner medulla. Musculature of conduits and infundibula is largely longitudinal. The calyx may be represented by a circular muscle bundle near the apex of every infundibulum. The large intralobar veins are partly adherent to their infundibulum and calyx and receive arcuate veins via valved orifices. Most branches of the renal artery enter via the interlobar septa. Within a septum they branch again and also supply numerous perforators, which thence enter the cortex. Remaining branches of the renal artery enter cortex directly from without. A fibromuscular scaffolding lies deep to arcuate veins where they contact medulla. Where these veins contact cortical tubules; however, their walls become merely endothelium, like the walls of the interlobular veins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号