首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrophobic affinity ligand L-tryptophan immobilized magnetic poly(glycidyl methacrylate) [m-poly(GMA)] beads in monosize form (1.6 microm in diameter) were used for the affinity purification of lysozyme from chicken egg white. The m-poly(GMA) beads were prepared by dispersion polymerization in the presence of Fe3O4 nano-powder. The epoxy groups of the m-poly(GMA) beads were converted into amino groups with 1,6 diaminohexane (i.e., spacer arm). l-tryptophan was then covalently immobilized on spacer arm attached m-poly(GMA) beads. Elemental analysis of immobilised L-tryptophan for nitrogen was estimated as 42.5 micromol/g polymer. Adsorption studies were performed under different conditions in a batch system (i.e., medium pH, protein concentration and temperature). Maximum lysozyme adsorption amount of m-poly(GMA) and m-poly(GMA)-L-tryptophan beads were 1.78 and 259.6 mg/g, respectively. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium adsorption capacity and correlation coefficients. Results suggest that chemisorption processes could be the rate-limiting step in the adsorption process. It was observed that after 10 adsorption-elution cycle, m-poly(GMA)-L-tryptophan beads can be used without significant loss in lysozyme adsorption capacity. Purification of lysozyme from egg white was also investigated. Purification of lysozyme was monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. It was found to be successful in achieving purification of lysozyme in a high yield of 76% with a purification fold of 71 in a single step. The specific activity of the eluted lysozyme (62,580 U/mg) was higher than that obtained with a commercially available pure lysozyme (Sigma (60,000 U/mg).  相似文献   

2.
Cibacron Blue F3GA was covalently attached onto monosize poly(glycidyl methacrylate) [poly(GMA)] beads for purification of lysozyme from chicken egg white. Monosize poly(GMA) beads, 1.6 microm in diameter, were produced by a dispersion polymerization technique. The content of epoxy groups on the surface of the poly(GMA) sample determined by the HCl-pyridine method (3.8 mmol/g). Cibacron Blue F3GA loading was 1.73 mmol/g. The monosize beads were characterized by elemental analysis, FTIR and SEM. Adsorption studies were performed under different conditions in a batch system (i.e., medium pH, protein concentration, temperature and ionic strength). Maximum lysozyme adsorption amount of poly(GMA) and poly(GMA)-Cibacron Blue F3GA beads were 1.6 and 591.7 mg/g, respectively. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium adsorption capacity and correlation coefficients. Results suggest that chemisorption processes could be the rate-limiting step in the adsorption process. It was observed that after 10 adsorption-elution cycle, poly(GMA)-Cibacron Blue F3GA beads can be used without significant loss in lysozyme adsorption capacity. Purification of lysozyme from egg-white was also investigated. Purification of lysozyme was monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. The purity of the eluted lysozyme was analyzed by SDS-PAGE and found to be 88% with recovery about 79%. The specific activity of the eluted lysozyme was high as 43,600 U/mg.  相似文献   

3.
Magnetic poly(2-hydroxyethyl methacrylate) mPHEMA beads carrying Cibacron Blue F3GA were prepared by suspension polymerization of HEMA in the presence of Fe3O4 nano-powder. Average size of spherical beads was 80-120 microm. The beads had a specific surface area of 56.0m(2)/g. The characteristic functional groups of dye-attached mPHEMA beads were analyzed by Fourier transform infrared spectrometer (FTIR) and Raman spectrometer. mPHEMA with a swelling ratio of 68% and carrying 28.5 micromol CibacronBlueF3GA/g were used for the purification of lysozyme. Adsorption studies were performed under different conditions in a magnetically stabilized fluidized bed (i.e., pH, protein concentration, flow-rate, temperature, and ionic strength). Lysozyme adsorption capacity of mPHEMA and mPHEMA/Cibacron Blue F3GA beads were 0.8 mg/g and 342 mg/g, respectively. It was observed that after 20 adsorption-desorption cycle, mPHEMA beads can be used without significant loss in lysozyme adsorption capacity. Purification of lysozyme from egg white was also investigated. Purification of lysozyme was monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. The purity of the desorbed lysozyme was about 87.4% with recovery about 79.6%. The specific activity of the desorbed lysozyme was high as 41.586 U/mg.  相似文献   

4.
The present work investigated the adsorption behaviors of lysozyme onto weak cation exchangers at different temperatures. The adsorption isotherm, adsorption thermodynamics and adsorption kinetics were studied. The results indicate that the adsorption of lysozyme onto acrylic acid copolymer based beads (Hydrolite D115) is spontaneous and exothermic, while that onto agarose based beads (CM Sepharose 6 Fast Flow) is also spontaneous, but endothermic. The pseudo second-order kinetic model fits well to the dynamic adsorption experimental data, and the kinetic results are also in concert with the adsorption thermodynamics.  相似文献   

5.
N-Methacryloyl-l-tryptophan (MATrp) containing poly(2-hydroxyethyl methacrylate) based supermacroporous cryogel [PHEMATrp] was prepared for lysozyme purification form chicken egg white. MATrp was synthesized by reacting methacryloyl chloride with l-tryptophan methyl ester and provided hydrophobic functionality to the cryogel. PHEMATrp cryogel with 60–100 μm pore size was obtained by free radical polymerization of HEMA and MATrp having a specific surface area of 50 m2/g. PHEMATrp cryogel was characterized by swelling studies, FTIR and SEM. The equilibrium swelling ratios of the cryogels were 7.18 g H2O/g for PHEMA and 6.99 g H2O/g for PHEMATrp. Lysozyme adsorption experiments were investigated under different conditions in continuous system (i.e., medium pH, flow-rate, protein concentration, temperature, salt type). Lysozyme adsorption capacity of PHEMA and PHEMATrp cryogels from aqueous solutions was estimated as 2.9 and 46.8 mg/g (0.49 and 7.85 mg/mL), respectively. Lysozyme molecules were desorbed with 0.5 M ethylene glycol solution with 91% recovery. It was observed that PHEMATrp cryogel can be used without significant decrease in lysozyme adsorption capacity after five adsorption–desorption cycles. PHEMATrp cryogel was used for the purification of lysozyme from chicken egg white. Purity of lysozyme was estimated by SDS-PAGE. Possible denaturation of purified lysozyme was checked with fluorimetric measurements. Specific activity of the purified lysozyme was found as 43,140 U/mg using Micrococcus lysodeikticus as substrate.  相似文献   

6.
Producing economically competitive recombinant human lysozyme from transgenic rice demands an inexpensive purification process for nonpharmaceutical applications. Human lysozyme is a basic protein, and thus, cation exchange chromatography was the selected method for lysozyme purification. Similar to other protein production systems, the identification of critical impurities in the rice extract was important for the development of an efficient purification process. Previous adsorption data indicated that phytic acid was probably responsible for an unacceptably low cation exchange adsorption capacity. In this study, we confirm that reducing phytic acid concentration improves lysozyme binding capacity and investigate alternative process conditions that reduce phytic acid interference. Compared with the previous best process, the adsorption capacity of human lysozyme was increased from 8.6 to 19.7 mg/mL when rice extract was treated with phytase to degrade phytic acid. Using tris buffer to adjust pH 4.5 extract to pH 6 before adsorption reduced phytic acid interference by minimizing phytic acid-lysozyme interactions, eliminated the need for phytase treatment, and increased the binding capacity to 25 mg/mL. Another method of reducing phytic acid concentration was to extract human lysozyme from rice flour at pH 10 with 50 mM NaCl in 50 mM sodium carbonate buffer. A similar binding capacity (25.5 mg/mL) was achieved from pH 10 extract that was clarified by acidic precipitation and adjusted to pH 6 for adsorption. Lysozyme purities ranged from 95 to 98% for all three processing methods. The tris-mediated purification was the most efficient of the alternatives considered.  相似文献   

7.
The fixation in the bone of an artificial titanium tooth root is believed to be initiated by the rapid adsorption of the proteins present in the surgical cavity on the titanium surface. The study of this adsorption should make it possible to predict the osseointegration capacities of new implant surface treatments. We describe here a new method, based on matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS), for quantifying proteins adsorbed on titanium surfaces fully identical to these designed for implantology. The key step of this method is a new MALDI-MS sample preparation allowing the adsorbed proteins to be removed from the surface and to be homogeneously dispersed in the matrix crystals. The adsorption of a model protein (lysozyme) on two titanium surfaces (polished and sandblasted) was studied in order to evaluate the method. The absolute MALDI-MS intensity was shown to vary linearly with the amount of adsorbed lysozyme. After dipping the titanium surfaces for different times in lysozyme solutions at different concentrations, the maximum amount of adsorbed lysozyme was measured by MALDI-MS and was shown to correspond to a lysozyme monolayer, which is consistent with results described in the literature.  相似文献   

8.
Two different dye-ligands, i.e. Procion Brown MX-5BR (RB-10) and Procion Green H-4G (RG-5) were immobilised onto poly(2-hydroxyethylmethacrylate) (pHEMA) membranes. The polarities of the affinity membranes were determined by contact angle measurements. Separation and purification of lysozyme from solution and egg white were investigated. The adsorption data was analysed using two adsorption kinetic models the first order and the second order to determine the best-fit equation for the separation of lysozyme using affinity membranes. The second-order equation for the adsorption of lysozyme on the RB-10 and RG-5 immobilised membranes systems is the most appropriate equation to predict the adsorption capacity for the affinity membranes. The reversible lysozyme adsorption on the RB-10 and RG-5 did not follow the Langmuir model, but obeyed the Temkin and Freundlich isotherm model. Separation and purification were monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. The purities of the eluted lysozyme, as determined by HPLC, were 76 and 92% with recovery 63 and 77% for RB-10 and RG-5 membranes, respectively. For the separation and purification of lysozyme the RG-5 immobilised membrane provided the best results. The affinity membranes are stable when subjected to sanitization with sodium hydroxide after repeated adsorption-elution cycles.  相似文献   

9.
Aggregation of lysozyme in an acidic solution generates inactive amyloid-like fibrils, with a broad infrared peak appearing at 1,610?C1,630?cm?1, characteristic of a ??-sheet rich structure. We report here that spontaneous refolding of these fibrils in water could be promoted by mid-infrared free-electron laser (mid-IR FEL) irradiation targeting the amide bands. The Fourier transform infrared spectrum of the fibrils reflected a ??-sheet content that was as low as that of the native structure, following FEL irradiation at 1,620?cm?1 (amide I band); both transmission-electron microscopy imaging and Congo Red assay results also demonstrated a reduced fibril structure, and the enzymatic activity of lysozyme fibrils recovered to 70?C90?% of the native form. Both irradiations at 1,535?cm?1(amide II band) and 1,240?cm?1 (amide III band) were also more effective for the refolding of the fibrils than mere heating in the absence of FEL. On the contrary, either irradiation at 1,100 or 2,000?cm?1 afforded only about 60?% recovery of lysozyme activity. These results indicate that the specific FEL irradiation tuned to amide bands is efficient in refolding of lysozyme fibrils into native form.  相似文献   

10.
A novel magnetic support was prepared by an oxidization-precipitation method with poly(vinyl alcohol) (PVA) as the entrapment material. Transmission electron microscopy indicated that the magnetic particles had a core-shell structure, containing many nanometer-sized magnetic cores stabilized by the cross-linked PVA. The particles showed a high magnetic responsiveness in magnetic field, and no aggregation of the particles was observed after the particles had been treated in the magnetic field. These facts indicated that the particles were superparamagnetic. Cibacron blue 3GA (CB) was coupled to the particles to prepare a magnetic affinity support (MAS) for protein adsorption. Lysozyme was used as a model protein to test the adsorption properties of the MAS. The adsorption equilibrium of lysozyme to the MAS was described by the Langmuir-type isotherm. The capacity for lysozyme adsorption was more than 70 mg/g MAS (wet weight) at a relatively low CB coupling density (3-5 micromol/g). In addition, 1.0 M NaCl solution could be used to dissociate the adsorbed lysozyme. Finally, the MAS was recycled for the purification of alcohol dehydrogenase (ADH) from clarified yeast homogenates. Under proper conditions, the magnetic separation yielded over 5-fold purification of the enzyme with 60% recovery of the enzyme activity.  相似文献   

11.
Human lysozyme has numerous potential therapeutic applications to a broad spectrum of human diseases. This glycosidic enzyme is present in tears, saliva, nasal secretions, and milk--sources not amendable for commercial development. Recently, a high expression level of recombinant human lysozyme (0.5% dry weight) was achieved in transgenic rice seed. This paper evaluates the effects of pH and ionic strength on rice protein and lysozyme extractability, as well as their interactions with the strong cation-exchange resin, SP-Sepharose FF. The extraction conditions that maximized lysozyme yield and the ratio of extracted human lysozyme to native rice protein were not optimal for lysozyme adsorption. The conditions that gave the highest extracted lysozyme to native protein ratio were pH 4.5 and 100 mM NaCl in 50 mM sodium acetate buffer. At pH 4.5, salt concentrations above 100 mM NaCl reduced the lysozyme-to-protein ratio. The best conditions for lysozyme adsorption were pH 4.5 and 50 mM sodium acetate buffer. Lysozyme extraction and subsequent adsorption at pH 4.5 and 50 mM NaCl was an acceptable compromise between lysozyme extractability, adsorption, and purity. The primary recovery of human lysozyme from pH 6 extracts, irrespective of ionic strength, was inferior to that using pH 4.5 with unacceptably low saturation capacities and lysozyme purity. High purity was achieved with a single chromatography step by adjusting the pH 4.5 extract to pH 6 before adsorption. The disadvantage of this approach was the drastically lower saturation capacity compared to adsorption at pH 4.5.  相似文献   

12.
以天然产物花生壳粉作为基质,环氧氯丙烷为交联剂,活性绿19(Reactive Green 19,简称RG19)为修饰剂,制备了新型的生物吸附剂RG19修饰花生壳粉微球,比较了RG19修饰花生壳粉前后对溶菌酶的吸附性能,包括吸附溶液的pH,溶菌酶的初始浓度,吸附时间,温度及NaCl的浓度对吸附的影响。结果表明,用25.0 mgRG19修饰花生壳粉微球处理溶菌酶溶液10 mL,pH值7.4,吸附时间4 h的条件下,对溶菌酶的吸附量是149.6mg·g-1,其酶活力保持率为96.4%,而未修饰的花生壳粉微球对溶菌酶的吸附量只有23.6 mg·g-1,修饰后是修饰前的6.3倍。在上述条件下从鸡蛋清中分离纯化溶菌酶,纯化倍数为31.0,收得率为64.2%。而且该吸附剂的复用性好。  相似文献   

13.
Functionalized Fe(3)O(4) nanoparticles conjugated with polyethylene glycol (PEG) and carboxymethyl chitosan (CM-CTS) were developed and used as a novel magnetic absorbing carrier for the separation and purification of lysozyme from the aqueous solution and chicken egg white, respectively. The morphology of magnetic CM-CTS nanoparticles was observed by transmission electron microscope (TEM). It was found that the diameter of superparamagnetic carboxymethyl chitosan nanoparticles (Fe(3)O(4) (PEG+CM-CTS)) was about 15 nm, and could easily aggregate by a magnet when suspending in the aqueous solution. The adsorption capacity of lysozyme onto the superparamagnetic Fe(3)O(4) (PEG+CM-CTS) nanoparticles was determined by changing the medium pH, temperature, ionic strength and the concentration of lysozyme. The maximum adsorption loading reached 256.4 mg/g. Due to the small diameter, the adsorption equilibrium of lysozyme onto the nanoparticles reached very quickly within 20 min. The adsorption equilibrium of lysozyme onto the superparamagnetic nanoparticles fitted well with the Langmuir model. The nanoparticles were stable when subjected to six repeated adsorption-elution cycles. Separation and purification were monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. The lysozyme was purified from chicken egg white in a single step had higher purity, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Considering that the superparamagnetic nanoparticles possess the advantages of high efficiency, cost-effectiveness and excellent binding of a larger amount of lysozyme and easier separation from the reaction system, thus this type of superparamagnetic nanoparticles would bring advantages to the conventional separation techniques of lysozyme from chicken egg white.  相似文献   

14.
This is a study on the recovery and recycling of copolymer in aqueous two-phase systems containing random copolymers of ethylene oxide (EO) and propylene oxide (PO). The random copolymers separate from water solution when heated above the lower critical solution temperature (LCST). The primary phase systems were composed of EOPO copolymer and hydroxypropyl or hydroxyethyl starch. After phase separation the upper EOPO phase was removed and subjected to temperature induced phase separation. Copolymers with different EO/PO compositions have been investigated, EO50PO50 [50% EO and 50% PO (w/w)], EO30PO70 and EO20PO80. The temperature required for thermoseparation decreases when the PO content of the copolymer is increased. The effect on the recovery of copolymer after addition of salts, a second polymer or protein was investigated. The added components increased the recovery of copolymer after thermoseparation, e.g., increased the amount copolymer separated from the water phase after thermoseparation. Recycling of copolymer and measurements of polymer concentrations in the primary top and bottom phases after repeated recycling steps was performed. The fluctuation in polymer concentration of the phases was very small after recycling up to four times. Partitioning of the proteins BSA and lysozyme was studied in primary phase systems after recycling of copolymer. The partition coefficients of total protein and lysozyme was not significantly changed during recycling of copolymer. More than 90% of the copolymer could be recovered in the thermoseparation step by optimising the temperature and time for thermoseparation. In repeated phase partitionings in EOPO–starch systems the EO50PO50 copolymer could be recovered to 77% including losses in primary system and thermoseparation, which is equivalent to a total copolymer reuse of 4.3 times.  相似文献   

15.
Ye C  Ilghari D  Niu J  Xie Y  Wang Y  Wang C  Li X  Liu B  Huang Z 《Journal of biotechnology》2012,160(3-4):169-175
An in-depth understanding of molecular basis by which smart polymers assist protein refolding can lead us to develop a more effective polymer for protein refolding. In this report, to investigate structure-function relationship of pH-sensitive smart polymers, a series of poly(methylacrylic acid (MAc)-acrylic acid (AA))s with different MAc/AA ratios and molecular weights were synthesized and then their abilities in refolding of denatured lysozyme were compared by measuring the lytic activity of the refolded lysozyme. Based on our analysis, there were optimal MAc/AA ratio (44% MAc), M(w) (1700 Da), and copolymer concentration (0.1%, w/v) at which the highest yield of protein refolding was achieved. Fluorescence, circular dichroism, and RP-HPLC analysis reported in this study demonstrated that the presence of P(MAc-AA)s in the refolding buffer significantly improved the refolding yield of denatured lysozyme without affecting the overall structure of the enzyme. Importantly, our bioseparation analysis, together with the analysis of zeta potential and particle size of the copolymer in refolding buffers with different copolymer concentrations, suggested that the polymer provided a negatively charged surface for an electrostatic interaction with the denatured lysozyme molecules and thereby minimized the hydrophobic-prone aggregation of unfolded proteins during the process of refolding.  相似文献   

16.
Macroporous poly(glycidyl methacrylate-triallyl isocyanurate-divinylbenzene) was prepared by a radical suspension copolymerization. Reaction of the copolymer with 2-hydroxyethyl amine was employed to obtain a hydrophilic matrix. An affinity dye, Cibacron blue 3GA, was then coupled covalently to prepare a novel macroporous affinity adsorbent. The surface and pore structure of the affinity adsorbent were examined by scanning electron micrography (SEM). SEM observations showed that the affinity adsorbent abounded in macropores. Bovine serum albumin (BSA) and lysozyme (Lys) were used as samples to examine the adsorption properties of the adsorbent. Under appropriate conditions, the affinity adsorbent had a capacity of 15.5 mg BSA/g and 22.3 mg Lys/g (wet adsorbent weight). The adsorbed proteins could be desorbed by increasing liquid phase ionic strength or by using a NaOH solution, and the adsorbent could be recycled for protein adsorption.  相似文献   

17.
Thermoprecipitation of lysozyme from egg white was demonstrated using copolymers of N-isopropylacrylamide with acrylic acid, methacrylic acid, 2-acryloylamido-2-methylpropane-sulfonic acid and itaconic acid, respectively. Polymers synthesized using molar feed ratio of N-isopropylacrylamide:acidic monomers of 98:2 exhibited lower critical solution temperatures in the range of 33--35 degrees C. These polymers exhibited electrostatic interactions with lysozyme and inhibited its bacteriolytic activity. The concentration of acidic groups required to attain 50% relative inhibition of lysozyme by the polymers, was 10(4)--10(5) times lower than that required for the corresponding monomers. This was attributed to the multimeric nature of polymer-lysozyme binding. More than 90% lysozyme activity was recovered from egg white. Polymers exhibited reusability up to at least 16 cycles with retention of >85% recovery of specific activity from aqueous solution. In contrast, copolymer comprising natural inhibitor of lysozyme i.e. poly (N-isopropylacrylamide-co-O-acryloyl N-acetylglucosamine) lost 50% recovery of specific activity. Thermoprecipitation using these copolymers, which enables very high recovery of lysozyme from egg white, would be advantageous over pH sensitive polymers, which generally exhibit lower recovery.  相似文献   

18.
以产低温碱性脂肪酶约氏不动杆菌(Acinetobacter johnsonii)LP28为出发菌株,采用EDTA和溶菌酶处理制备原生质体.确定其最佳处理条件为37℃的水浴下,以终浓度为0.15 mg/mL的溶菌酶处理45 min,最终可获得90%的原生质体形成率及0.9%左右的再生率.采用紫外诱变原生质体的方法,筛选得...  相似文献   

19.
A phenylalanine (Phe) imprinted polymer was prepared by the wet-phase inversion and sol–gel transition method to endow a copolymer matrix with a large uptake capacity of template molecules and prominent adsorption selectivity at the high concentration of the racemate solution. A copolymer bead prepared by wet-phase inversion was shrunken in a hydrochloric acid solution containing a large amount of template molecules after swelling in a sodium hydroxide solution. Template molecules were effectively implanted in the polymer matrix during shrinking after swelling. The adsorption selectivities of Phe-imprinted copolymer bead were 2.1 and 1.33 at 1 g and 10 g Phe/l racemate solution, respectively, and the Phe uptake capacity reached about 1 g Phe/g dry weight of the copolymer. The adsorption selectivity of the copolymer was retained after five batches of adsorption/desorption in 1 g Phe/l solution composed of 5% D-Phe and 95% L-Phe.  相似文献   

20.
Surface plasmon resonance (SPR) was used as an affinity biosensor to determine absolute heparin concentrations in human blood plasma samples. Protamine and polyethylene imine (PEI) were evaluated as heparin affinity surfaces. Heparin adsorption onto protamine in blood plasma was specific with a lowest detection limit of 0.2 U/ml and a linear window of 0.2–2 U/ml. Although heparin adsorption onto PEI in buffer solution had indicated superior sensitivity to that on protamine, in blood plasma it was not specific for heparin and adsorbed plasma species to a steady-state equilibrium. By reducing the incubation time and diluting the plasma samples with buffer to 50%, the non-specific adsorption of plasma could be controlled and a PEI pre-treated with blood plasma could be used successfully for heparin determination. Heparin adsorption in 50% plasma was linear between 0.05 and 1 U/ml so that heparin plasma levels of 0.1–2 U/ml could be determined within a relative error of 11% and an accuracy of 0.05 U/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号