首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C L Lee  S S Li  C Y Li    T M Chu 《The Biochemical journal》1983,215(3):605-612
Four ribonucleases (RNAases I-IV) have been purified to homogeneity from human seminal plasma by precipitation with 40-75%-satd. (NH4)2SO4, followed by chromatographies on concanavalin A-Sepharose 4B, DEAE-cellulose phosphocellulose, agarose-5'-(4-aminophenylphospho)uridine 2'(3')-phosphate (RNAase affinity column) and Sephadex G-75 or G-100. The homogeneity of these RNAases was confirmed by polyacrylamide-gel electrophoresis. Mr values for these purified RNAases were 78 000, 16 000, 13 300 and 5000 as estimated by gel filtration. Enzyme activities of RNAases I, III and IV were inhibited by Mn2+, Zn2+ and Cu2+ and activated by Na+, K+, Ba2+, Mg2+, Fe2+ and EDTA, whereas that of RNAase II was inhibited by Ba2+, Mg2+, Fe2+, Mn2+, Zn2+ and Cu2+ and activated by Na+, K+ and EDTA. RNAases I, II and IV demonstrated a higher affinity for poly(C) and poly(U) or yeast RNA, whereas RNAase III preferentially hydrolysed poly(U) over poly(C) and yeast RNA. In the presence of 5 mM-spermine, RNAase I was dissociated to a low-Mr (5000) enzyme with an increase in total RNAase enzymic activity. Xenoantiserum to each RNAase was raised and evaluated by immunoprecipitation and immunohistochemical methods. Anti-(seminal RNAase III) antiserum showed no immunological cross-reaction with RNAases of other human origin, whereas anti-(seminal RNAase I), -(RNAase II) and -(RNAase IV) antisera exhibited indistinguishable immunological reactions with serum RNAase and other human RNAases, except that anti-(seminal RNAase I) and -(RNAase antisera IV) did not react with pancreatic RNAases. Seminal RNAases I and IV were identical immunologically as shown by anti-(RNAase I) and anti-(RNAase IV) in immunodiffusion. Immunohistochemical study revealed that, among human tissues examined, only prostate expressed seminal RNAase III. These results suggested that human seminal RNAase I may be an aggregated molecule of RNAase IV and that seminal RNAases II and IV are similar to serum RNAases, whereas seminal RNAase III is a prostate-specific enzyme.  相似文献   

2.
Three enzymes possessing RNAase activity were isolated from barley seeds. These enzymes were further purified by ammonium sulphate precipitation DEAE-cellulose chromatography, gel filtration on Sephadex G-75 and DEAE-Sephadex A-50 chromatography. These enzymes have been characterized and classified as: 1. Plant RNAase I (EC 3.1.27.1). It has a pH optimum at 5.7 and molecular weight of 19 000. 2. Plant RNAase II (EC 3.1.27.1). It has a pH optimum at 6.35 and molecular weight of 19 000. 3. Plant nuclease I (EC 3.1.30.2). It has a pH optimum at 6.8 and molecular weight of 37 000. Two RNAases were purified to homogeneity by means of affinity chromatography on poly(G)-Sepharose 4B, as shown by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate.  相似文献   

3.
Preparations of soluble (I) and membrane-bound (II) acid RNAse with Mr 68,000 and 72,000 Da, respectively, and purified about 2000-fold were isolated from lysosome-rich fractions of rat brain large hemispheres. RNAase II differed from RNAase I by a lower temperature stability. The pH optimum (pH 5.8-6.1), temperature optimum and substrate specificity of RNAase I and II appeared to be identical. The Km values of RNAases I and II for poly(U) are 166 and 160 micrograms/ml; those for RNA--1200 and 1250 mu k/ml, respectively. RNAases I and II extensively hydrolyze soluble, polymeric RNA, rRNA from brain and yeast and poly(U) but do not influence poly(C), poly(A), poly(G), tRNA and DNA. Monovalent cations (K+, Na+, NH4+) activate both RNAase forms.  相似文献   

4.
1. RNAases varying in pH optimum, activation with pCMB, sensitivity towards temperature and acid treatment, as well as electrophoretic mobility were found in Rana esculenta liver extract. 2. Of the three activity peaks of alkaline ribonuclease separated on CM-cellulose with 2000-fold purification, RNAase of peak C is thermo- and acid-stable and exhibits specificity for pyrimidine bases, preferring poly(U) over poly(C). 3. Differences in the specific "inhibitory effect" of frog liver supernatant on the frog liver alkaline RNAase were observed.  相似文献   

5.
1. A ribonuclease (RNAase CL) (EC 3.1.4.23, ribonucleate 3'-oligonucleotide hydrolase) was extracted by EDTA/acetate buffer, pH 5.6 from acetonedried cells of Candida lipolytica and purified 1350-fold by acetone and (NH4)2SO4 fractionation, DEAE-cellulose and DEAE-Sephadex chromatography. 2. RNAase CL is an acidic protein having an isoelectric point of 4.2, and an approximate molecular weight of 32 000. 3. Optimal pH and temperature for the enzyme were 6.0 and 60 degrees C, respectively. It is stable at neutral pH up to 50 degrees C. At 64 degrees C for 30 min, 95, 49 and 64% inactivation of the enzyme occurred at pH values 4.2, 6.6 and 10.0, respectively. 4. RNAase CL inhibited by Zn2+ and Cu2+, sulfhydryl reactants and by high concentration of salts, but not by chelating agents. 5. RNAase CL degraded ribosomal RNA, transfer RNA, polyadenylic acid, polycytidylic acid and polyuridylic acid into acid-soluble nucleotides. Among the synthetic homopolymers, polycytidylic acid was most rapidly degraded. Polyguanylic acid and duplexes of synthetic homopolymers were less sensitive. DNA was not attacked. Specificity studies showed that RNAase CL preferentially cleaves pC-purine bonds. 6. Digestion of poly (C) by RNAase CL resulted in the liberation of cyclic 2',3'-CPM from the start of the reaction with no observable formation of intermediate oligonucleotides. This suggests that the enzyme depolymerizes by an exonucleolytic mechanism.  相似文献   

6.
Treatment of calf serum at 60 degrees C and pH 3.5 followed by chromatography on carboxymethyl (CM) cellulose resulted in the separation of two major peaks of alkaline RNAse activity. One was eluted from CM-cellulose at 0.075 M KCl with an overall purification of 5400-fold and the other was eluted at 0.25 M KCl with a 6700-fold purification. The RNAse eluted from CM-cellulose at 0.075 M KCl was almost completely inhibited by anti-RNAse A serum and by the endogenous RNAse inhibitor and a 33% inhibition was observed in the presence of 5 mM MgCl2. This enzyme seems to be similar or identical to RNAse A. The other RNAse, eluted from CM-cellulose at 0.25 M KCl was not inhibited by anti-RNAse A or 5 mM MgCl2 and was much less sensitive to the endogenous inhibitor. Both enzymes degraded RNA endonucleolytically and the nucleoside monophosphates obtained after partial hydrolysis of RNA by the two serum RNAases were primarily 2'- or 3' -CMP and 2'- or 3' -UMP. Poly(A), native DNA and denatured DNA were degraded slowly or not at all. The RNAase A-like enzyme degraded poly(C) at a significantly faster rate, and poly(U) at a slower rate, than RNA. However, the other serum RNAase was more active with poly(U) than with RNA and almost inactive with poly(C) as the substrate.  相似文献   

7.
The alkaline nuclease (pH optimum 9.0) has been purified about 500-fold in 25% yield from the extract of rat liver mitochondria. The enzyme cleaves yeast RNA, poly(U), poly(U), poly(C) and denatured DNA to yield oligonucleotides with 5'-phosphoryl and 3'-hydroxyl ends. The enzyme has a molecular weight of about 60 000, a sedimentation coefficient of 4 S and an isoelectric point of 9.0. The behaviors of RNAase activity of the nuclease are identical with those of DNAase activity in column chromatography as well as in catalytic nature. The affinities of RNAase activity for substrate, Mg2+, spermidine and polyvinyl sulfate are lower than those of DNAase activity. The alkaline nuclease activity measured in the homogenate of regenerating rat liver is not significantly changed.  相似文献   

8.
The two sulfate-activating enzymes, ATP-sulfurylase (EC 2.7.7.4) and adenosine-5'-phosphosulfate kinase (adenylylsulfate kinase, EC 2.7.1.25), were each purified about 2000-fold from crude rat chondrosarcoma homogenate. Throughout a purification protocol which included Sephacryl S-300 gel filtration, DEAE-Sephadex ion exchange, hydroxylapatite, and ATP-agarose affinity chromatography, these two activities consistently co-purified. ATP-sulfurylase and adenosine-5'-phosphosulfate kinase each showed a pH optima of 7.0-7.4 and a bimodal temperature optima of 46 and 52-54 degrees C. Both activities preferred Mg2+ as their divalent cation source over Mn2+, Co2+, or Zn2+. The apparent Km values determined for adenosine 5'-phosphosulfate in both assays was 1-5 microM; the Km for pyrophosphate in the sulfurylase reaction was 40 microM and for ATP in the kinase reaction was 5 mM. Gel electrophoresis indicated major bands at Mr = 160,000 in nondenaturing systems and 35,000-37,000 and 60,000 under dissociative conditions, whereas gel filtration of the most highly purified fractions yielded a coincident peak in the molecular weight range 260,000.  相似文献   

9.
A ribonuclease (RNAase) was isolated and purified from the urine of a 45-year-old man by column chromatographies on DEAE-Sepharose CL-6B, cellulose phosphate and CM-cellulose followed by gel filtrations on Bio-Gel P-100 and Sephadex G-75, and finally to a homogeneous state by SDS-polyacrylamide gel electrophoresis. The enzyme was designated RNAase 1. It was possible to detect RNAase 1 isozymes in urine and serum without difficulty using isoelectric focusing electrophoresis followed by immunoblotting with a rabbit antibody specific to RNAase 1. The existence of genetic polymorphism of RNAase 1 was detected in human serum utilizing this technique (Yasuda, T. et al. (1988) Am. J. Hum. Genet., in press). RNAase 1 in serum and urine seemed to exist in multiple forms with regard to molecular weight and pI value. Genetically polymorphic RNAase 1 was a glycoprotein, containing three mannose, one fucose, four glucosamine and no sialic acid residues per molecule, with a molecular weight of 16,000 and 17,500 determined by gel filtration and SDS-polyacrylamide gel electrophoresis, respectively. The enzyme was most active at pH 7.0 on yeast RNA substrate and inhibited remarkably by Cu2+, Hg2+ and Zn2+. It also showed definite substrate preference for poly(C) and poly(U), but much less activity against poly(A) and poly(G). Thus, the enzyme is a pyrimidine-specific RNAase.  相似文献   

10.
Lysobacter enzymogenes produced a nonspecific extracellular nuclease and an extracellular RNAase when grown in tryptone broth. Both enzyme activities appeared after the exponential growth phase of the organism. The addition of RNA to the medium specifically inhibited the production of the nuclease and the addition of phosphate prevented the synthesis of the RNAase. DNA had no effect on the enzyme production. The Lysobacter nuclease was purified 274-fold and its molecular weight was estimated to be between 22 000 and 28 000. Freshly purified nuclease showed one major protein band and one major activity band on polyacrylamide gels, whereas two major bands were seen after prolonged storage of the enzyme. The nuclease was most active at pH 8.0 and required Mg2+ or Mn2+. Little activity was obtained in the presence of Ca2+. The enzyme degraded double-stranded DNA more rapidly than single-stranded DNA or RNA and was essentially inactive with poly(A) or poly(C) as the substrate. Extensive hydrolysis of double-stranded DNA by the enzyme yielded oligodeoxyribonucleotides with terminal 5'-phosphate groups. The Lysobacter RNAase appeared to have a molecular weight approximately twice that of the nuclease and was specific for ribonucleotide polymers.  相似文献   

11.
The DNAase in human urine was purified about 30-fold with a recovery of 28%. This involved DEAE-cellulose and phosphocellulose chromatography steps and gel filtration on Sephadex G-75. The enzyme required divalent cations such as Co2+, Mg2+, Mn2+ and Zn2+ for activity, but Ca2+, Cu2+ and Fe2+ were ineffective. EDTA and G-actin inhibited the reaction. The maximum activity was observed at pH 5.5 in acetate buffer plus Co2+ or Mg2+ and Ca2+. It had a molecular weight of approximately 38 000, estimated by gel filtration on Sephadex G-75 and isoelectric point of around pH 3.9. The enzyme is an endonuclease which hydrolyzes native, double-stranded DNA about 3 to 4 times faster than thermally denatured DNA to produce 5'-phosphoryl- and 3'-hydroxyl-terminated oligonucleotides. The final preparation was free of non-specific acid and alkaline phosphatases, phosphodiesterase and ribonuclease activities.  相似文献   

12.
1. Incubation of Schistosoma mansoni for 5 min in a phosphate-buffered medium, pH 7.4, released tegumental material containing the following phosphohydrolase activities: alkaline phosphatase, 5'-nucleotidase, glycerol-2-phosphatase, glucose 6-phosphatase, phosphodiesterase and ATPase. 2. Maximum activity of these enzymes was measured at pH 9.5; however, the phosphodiesterase and ATPase activities were also appreciable at pH 7.0. 3. Solubilization of the released tegumental material in 1% Triton X-100 followed by gel filtration distinguished three peaks of enzyme activity: an ATPase (mol.wt. greater than 1000 000), a phosphodiesterase (mol.wt. 1 000 000) and an alkaline phosphomonoesterase with broad specificity (mol.wt. 232 000). 4. The ATPase activity was highly activated by 10 mM-Mg2+ or 1 mM-Ca2+ and was inhibited by chelating agents. Ouabain, Na+ and K+ had little effect on enzyme activity, whereas activity was increased by 50% in the presence of calmodulin. The phosphodiesterase activity was highest in the presence of 100 mM-Na+ or -K+, and 10 mM-Mg2+ or -Ca2+. Alkaline phosphatase activity was also stimulated by 100 mM-Na+ or -K+, and 10 mM-Mg2+; however Ca2+ inhibited at greater than 1 mM. 5. Surface iodination of parasites followed by detergent solubilization and gel filtration of the released tegumental membranes indicated that these enzymes were not accessible. A major surface component, apparent mol.wt. 80 000, was iodinated. 6. Rabbit anti-(mouse liver 5'-nucleotidase) antibodies did not inhibit the phosphohydrolase activities. However, an immunoglobulin G fraction from sera of mice chronically infected with S. mansoni partially inhibited alkaline phosphatase activity, but was without effect on the phosphodiesterase and ATPase activities. 7. The location of the enzymes in the double membrane of the tegument and their significance in host-parasite interactions is discussed.  相似文献   

13.
Dromedary (Camelus dromedarius) RNAase (ribonuclease) was isolated from pancreatic tissue by affinity chromatography. Peptides obtained by digestion with different proteolytic enzymes and CNBr were isolated by gel filtration, preparative high-voltage paper electrophoresis and paper chromatography. Peptides were sequenced by the dansyl-Edman method. All peptide bonds were overlapped by one or more peptides. The polypeptide chain consists of 123 amino acids. A deletion (position 39) was observed in an external loop of the polypeptide chain (residues 35-40), as was found earlier to horse RNAase (Scheffer & Beintema, 1974). A heterogeneity was found at position 103 (glutamine and lysine). Dromedary RNAase differs at 23-32% of the positions from all other pancreatic RNAases sequenced to date. In evolutionary terms this indicates that dromedary RNAase has evolved independently during the larger part of the evolution of the mammals. Detailed evidence for the sequence has been deposited as Supplementary Publication SUP 50046 (14 pages) at the British Library (Lending Division), Boston Spa, Wetherby, W. Yorks. LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1975) 145, 5.  相似文献   

14.
Poly(A) polymerase has been purified to near homogeneity from the cytoplasm of Artemia salina cryptobiotic gastrulae by ion-exchange chromatography on DEAE-cellulose, DEAE-Sepharose CL-6B and phosphocellulose P11, gel filtration on CL-Sepharose 6B, affinity chromatography on poly(A)-Sepharose 4B and ATP-agarose. The enzyme is fully dependent on exogeneous oligo(riboadenylic acid) and is free of any nuclease or other enzyme activities. In standard assay conditions the enzyme preparation has a specific activity of 5.6 mumol AMP . h-1 . (mg protein)-1. Sodium dodecyl sulphate/polyacrylamide gel electrophoresis reveals the presence of only two proteins with Mr 94 000 and 70 000. The Mr-70 000 protein has been identified as poly(A) polymerase. The enzyme is exclusively activated by Mn2+. Addition of Ca2+, Mg2+, Zn2+, NH4+, K+ or Na+ inhibits the enzymatic reaction. The activity is specific for ATP and competitive inhibition is observed in the presence of other ribonucleoside 5'-triphosphates. AMP incorporation is time-dependent and is increased non-linearly with protein and primer concentration.  相似文献   

15.
Using pancreatic RNAase and RNAase from Act. rimosus as models, the effect of modification by azocombination on the catalytic properties of enzymes were studied. It was shown that RNAases binding to soluble dextran did not cause any significant changes in their major catalytic properties, when polymeric RNA was used as a substrate. At the same time, the physico-chemical properties of the modified enzymes may result in changes in the catalytic properties in a reaction with low molecular weight substrates. Evidence for this observation can be obtained from the increase in the synthetic activity of modified pancreatic RNAase as compared to the hydrolase activity in the dinucleotide synthesis reaction.  相似文献   

16.
RNAases (ribonucleases), purified from four human tissues, as well as bovine pancreatic RNAase (RNAase A), were studied by immunodiffusion methods and by two different primary binding tests. The enzymes fell into two groups immunologically, those purified from plasma and pancreas in one and those from spleen and liver in the other. No antigenic cross-reaction between the two groups was detected by any of the immunoassays used. There was a slight antigenic cross-reaction between the human and bovine pancreatic RNAases. The liver and spleen RNAases were immunologically identical by all criteria used, whereas a small but consistent antigenic difference between the human plasma and human pancreas enzymes was detected. The significance of this difference between the human plasma and pancreas RNAases is discussed in relation to similarities and differences in their properties.  相似文献   

17.
A subpopulation of canine cardiac sarcoplasmic reticulum vesicles has been found to contain a "Ca2+ release channel" which mediates the release of intravesicular Ca2+ stores with rates sufficiently rapid to contribute to excitation-contraction coupling in cardiac muscle. 45Ca2+ release behavior of passively and actively loaded vesicles was determined by Millipore filtration and with the use of a rapid quench apparatus using the two Ca2+ channel inhibitors, Mg2+ and ruthenium red. At pH 7.0 and 5-20 microM external Ca2+, cardiac vesicles released half of their 45Ca2+ stores within 20 ms. Ca2+-induced Ca2+ release was inhibited by raising and lowering external Ca2+ concentration, by the addition of Mg2+, and by decreasing the pH. Calmodulin reduced the Ca2+-induced Ca2+ release rate 3-6-fold in a reaction that did not appear to involve a calmodulin-dependent protein kinase. Under various experimental conditions, ATP or the nonhydrolyzable ATP analog, adenosine 5'-(beta, gamma-methylene)triphosphate (AMP-PCP), and caffeine stimulated 45Ca2+ release 2-500-fold. Maximal release rates (t1/2 = 10 ms) were observed in media containing 10 microM Ca2+ and 5 mM AMP-PCP or 10 mM caffeine. An increased external Ca2+ concentration (greater than or equal to 1 mM) was required to optimize the 45Ca2+ efflux rate in the presence of 8 mM Mg2+ and 5 mM AMP-PCP. These results suggest that cardiac sarcoplasmic reticulum contains a ligand-gated Ca2+ channel which is activated by Ca2+, adenine nucleotide, and caffeine, and inhibited by Mg2+, H+, and calmodulin.  相似文献   

18.
A specific Mg2+-dependent bis(5'-adenosyl)-triphosphatase (EC 3.6.1.29) was purified 270-fold from Escherichia coli. The enzyme had a strict requirement for Mg2+. Other divalent cations, such as Mn2+, Ca2+, or Co2+, were not effective. The products of the reaction with bis(5'-adenosyl) triphosphate (Ap3A) as the substrate were ADP and AMP in stoichiometric amounts. The Km for Ap3A was 12 +/- 5 microM. Bis(5'-adenosyl) di-, tetra-, and pentaphosphates, NAD+, ATP, ADP, AMP, glucose 6-phosphate, p-nitrophenylphosphate, bis-p-nitrophenylphospate, and deoxyribosylthymine-5'-(4-nitrophenylphosphate) were not substrates of the reaction. The enzyme had a molecular mass of 36 kilodaltons (as determined both by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis), an isoelectric point of 4.84 +/- 0.05, and a pH optimum of 8.2 to 8.5. Zn2+, a known potent inhibitor of rat liver bis(5'-adenosyl)-triphosphatase and bis(5'-guanosyl)-tetraphosphatase (EC 3.6 1.17), was without effect. The enzyme differs from the E. coli diadenosine 5',5'-P1, P4-tetraphosphate pyrophosphohydrolase which, in the presence of Mn2+, also hydrolyzes Ap3A.  相似文献   

19.
The deoxyribonuclease induced in KB cells by herpes simplex virus (HSV) type 1 and type 2 has been purified. Both enzymes are able to completely degrade single- and double-stranded DNA yielding 5'-monophosphonucleotides as the sole products. A divalent cation, either Mg2+ or Mn2+, is an absolute requirement for catalysis and a reducing agent is necessary for enzyme stability. The maximum rate of reaction is achieved with 5 mM MgCl2 for both HSV-1 and HSV-2 DNase. The optimum concentration for Mn2+ is 0.1 to 0.2 mM and no exonuclease activity is observed when the concentration of Mn2+ is greater than 1 mM. The rate of reaction at the optimal Mg2+ concentration is 3- to 5-fold greater than that at the optimal Mn2+ concentration. In the presence of Mg2+, the enzymes are inhibited upon the addition of Mn2+, Ca2+, and Zn2+. The enzymatic reaction is also inhibited by spermine and spermidine, but not by putrescine. Crude and purified HSV-1 and HSV-2 DNase can degrade both HSV-1 and HSV-2 DNA, but native HSV-1 DNA is hydrolyzed at only 22% of the rate and HSV-2 DNA at only 32% of the rate of Escherichia coli DNA. Although HSV-1 and HSV-2 DNase were similar, minor differences were observed in most other properties such as pH optimum, inhibition by high ionic strength, activation energy, and sedimentation coefficient. However, the enzymes differ immunologically.  相似文献   

20.
Anti-influenzal action of bacterial and pancreatic RNAases was studied. It was shown in ovo that the RNAases had distinct virus inhibiting activity with respect to various strains of the grippe A virus and did not practically differ by their activity from remantadin but unlike it had inhibitory action on the grippe B virus. The anti-influenzal activity of bacterial RNAase in contrast to pancreatic one was detected not only in experiments with developing chick embryos but also in albino mice with lethal influenzal infection. The index of the animal protection by the preparation amounted to 54-90 per cent depending on the virus infecting dose and RNAase administration route, the lifespan of the animals being increased by 2.4 to 3.8 days. It was shown that the anti-influenzal effect of bacterial RNAase correlated with high levels of the exogenic enzyme in blood of the animals after the preparation intravenous administration. Elimination of RNAase was observed already within the first 4 hours after the experiment start. Intranasal administration allowed to increase the residence time of RNAase in blood up to 8 hours at the account of its gradual absorption from the administration site and the preparation availability increased more than 2-fold. The results provided the basis for recommending the intranasal route of bacterial RNAase administration for use in further investigation of RNAase antiviral activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号