首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

For molecular mechanics simulations of solvated molecules, it is important to use a consistent approach for calculating both the force field energy and the solvation free energy. A continuum solvation model based upon the atomic charges provided with the CFF91 force field is derived. The electrostatic component of the solvation free energy is described by the Poisson-Bolzmann equation while the nonpolar comonent of the solvation energy is assumed to be proportional to the solvent accessible surface area of the solute. Solute atomic radii used to describe the interface between the solute and solvent are fitted to reproduce the energies of small organic molecules. Data for 140 compounds are presented and compared to experiment and to the results from the well-characterized quantum mechanical solvation model AM1-SM2. In particular, accurate results are obtained for amino acid neutral analogues (mean unsigned error of 0.3 kcal/mol). The conformational energetics of the solvated alanine dipeptide is discussed.  相似文献   

2.
A general algorithm based on the Green function theorem has been developed to correctly reproduce electrostatic fields inside a closed space by point charges and point dipoles on the surface surrounding the space. For actual computations, limited numbers of point charges, including charge pairs replacing point dipoles, are enough to approximate the inner fields. As examples, reaction fields were reproduced by the current surface charges and dipoles for the dielectric models, where a monopole, dipole, or quadrupole was individually set at the center in a vacuum sphere surrounded by high dielectric continuum. The potentials due to those reaction fields agree well with the analytical ones. As an application of this method to the analysis of the electronic structure of the active site of a protein, a combination of the continuum dielectric model and ab initio molecular orbital calculation was carried out. Other applications to molecular dynamics and quantum mechanical calculations are also discussed.  相似文献   

3.
We apply continuum solvent models to investigate the relative stability of various conformational forms for two RNA sequences, GGAC(UUCG)GUCC and GGUG(UGAA)CACC. In the first part, we compare alternate hairpin conformations to explore the reliability of these models to discriminate between different local conformations. A second part looks at the hairpin-duplex conversion for the UUCG sequence, identifying major contributors to the thermodynamics of a much large scale transition. Structures were taken as snapshots from multi-nanosecond molecular dynamics simulations computed in a consistent fashion using explicit solvent and with long-range electrostatics accounted for using the Particle-Mesh Ewald procedure. The electrostatic contribution to solvation energies were computed using both a finite-difference Poisson-Boltzmann (PB) model and a pairwise Generalized Born model; non-electrostatic contributions were estimated with a surface-area dependent term. To these solvation free energies were added the mean solute internal energies (determined from a molecular mechanics potential) and estimates of the solute entropy (from a harmonic analysis). Consistent with experiment and with earlier solvated molecular dynamics simulations, the UUCG hairpin was found to prefer conformers close to a recent NMR structure determination in preference to those from an earlier NMR study. Similarly, results for the UGAA hairpin favored an NMR-derived structure over that to be expected for a generic GNRA hairpin loop. Experimental free energies are not known for the hairpin/duplex conversion, but must be close to zero since hairpins are seen in solution and duplexes in crystals; out calculations find a value near zero and illustrate the expected interplay of solvation, salt effects and entropy in affecting this equilibrium.  相似文献   

4.
 The major role of electrostatic effects in the control of redox potentials in proteins is now widely appreciated. However, the evaluation and conceptualization of the actual electrostatic contributions is far from trivial, and some models still overlook the nature of electrostatic effects in proteins. This commentary considers different contributions to redox potentials of proteins and discusses the ability of different models to capture these contributions. It is pointed out that macroscopic models which consider the protein as a medium of uniform low dielectric constant cannot reproduce the proper physics of redox proteins. In particular, it is pointed out that the crucial effects of the protein permanent dipoles must be taken into account explicitly and that these permanent dipoles involve effective dielectric constants that are different from those for ionized residues. It is also argued that the reorganization of the protein upon change of oxidation states or ionization of protein residues should be taken into account in redox calculations. The role of water penetration and the inadequacy of describing electrostatic effects by solvent accessibility is briefly mentioned. The nature and the meaning of the "dielectric constant" that should be used in redox calculations are also discussed. It is pointed out that the "dielectric constant" εp used in current discretized continuum (DC) models is simply a representation of the contributions which are treated implicitly and not the proper dielectric constant of the protein. It is then explained that the need to use a large "dielectric constant" in DC models reflects, among other factors, the implicit representation of the reorganization of permanent dipoles, and that even an explicit treatment of the fluctuations of ionized surface residues will lead to incorrect results when one uses εp=εˉ in continuum treatments. Finally, it is suggested that although the discussion and classification of different contributions to redox potentials is very useful, only the evaluation of the totality of the protein contributions (rather than an arbitrary subset) can lead to a quantitative understanding of redox proteins. Received, accepted: 26 November 1996  相似文献   

5.
A previously described scheme for the direct calculation of the partial atomic charges in molecules (CHARGE2) is applied to the nucleic acid bases. It is shown that inclusion of the omega-technique for the calculation of HMO derived pi charges is of particular importance for these highly polar systems. The molecular dipole moments obtained for the resulting charges are in very good agreement with the observed values for a variety of substituted purine and pyrimidine bases. The partial atomic charges for cytosine, thymine, guanine and adenine (as the 1-methyl and 9-methyl forms) are given and compared with values calculated by a variety of molecular orbital and empirical schemes. All the schemes reproduce the same general trends, with the possible exception of those calculated by the Del Re method, though the charges given by Kollman are in general somewhat larger than the others. The electrostatic contribution to the Watson-Crick base pair interaction energies are calculated using these partial atomic charges. The electrostatic contributions obtained from the M.O. derived atomic charges are less than half the observed values, as are those obtained by the Gasteiger method. The electrostatic contributions calculated from the CHARGE2 atomic charges and those of Kollman are in reasonable agreement with the observed values. The influence of a distant-dependent dielectric constant is examined, but no clear pattern emerges.  相似文献   

6.
7.
Here, the methods of continuum electrostatics are used to investigate the contribution of electrostatic interactions to the binding of four protein-protein complexes; barnase-barstar, human growth hormone and its receptor, subtype N9 influenza virus neuraminidase and the NC41 antibody, the Ras binding domain (RBD) of kinase cRaf and a Ras homologue Rap1A. In two of the four complexes electrostatics are found to strongly oppose binding (hormone-receptor and neuraminidase-antibody complexes), in one case the net effect is close to zero (barnase-barstar) and in one case electrostatics provides a significant driving force favoring binding (RBD-Rap1A). In order to help understand the wide range of electrostatic contributions that were calculated, the electrostatic free energy was partitioned into contributions of individual charged and polar residues, salt bridges and networks involving salt bridges and hydrogen bonds. Although there is no one structural feature that accounts for the differences between the four interfaces, the extent to which the desolvation of buried charges is compensated by the formation of hydrogen bonds and ion pairs appears to be an important factor. Structural features that are correlated with contribution of an individual residue to stability are also discussed. These include partial burial of a charged group in the free monomer, the formation of networks involving charged and polar amino acids, and the formation of partially exposed ion-pairs. The total electrostatic contribution to binding is found to be inversely correlated with buried total and non-polar surface area. This suggests that different interfaces can be designed to exploit electrostatic and hydrophobic forces in very different ways.  相似文献   

8.
Structure prediction and computational protein design should benefit from accurate solvent models. We have applied implicit solvent models to two problems that are central to this area. First, we performed sidechain placement for 29 proteins, using a solvent model that combines a screened Coulomb term with an Accessible Surface Area term (CASA model). With optimized parameters, the prediction quality is comparable with earlier work that omitted electrostatics and solvation altogether. Second, we computed the stability changes associated with point mutations involving ionized sidechains. For over 1000 mutations, including many fully or partly buried positions, we compared CASA and two generalized Born models (GB) with a more accurate model, which solves the Poisson equation of continuum electrostatics numerically. CASA predicts the correct sign and order of magnitude of the stability change for 81% of the mutations, compared to 97% with the best GB. We also considered 140 mutations for which experimental data are available. Comparing to experiment requires additional assumptions about the unfolded protein structure, protein relaxation in response to the mutations, and contributions from the hydrophobic effect. With a simple, commonly-used unfolded state model, the mean unsigned error is 2.1 kcal/mol with both CASA and the best GB. Overall, the electrostatic model is not important for sidechain placement; CASA and GB are equivalent for surface mutations, while GB is far superior for fully or partly buried positions. Thus, for problems like protein design that involve all these aspects, the most recent GB models represent an important step forward. Along with the recent discovery of efficient, pairwise implementations of GB, this will open new possibilities for the computational engineering of proteins.  相似文献   

9.
A new method for calculating the total electrostatic free energy of a macromolecule in solution is presented. It is applicable to molecules of arbitrary shape and size, including membranes or macromolecular assemblies with substrate molecules and ions. The method is derived from integrating the energy density of the electrostatic field and is termed the field energy method. It is based on the dielectric model, in which the solute and the surrounding water are regarded as different continuous dielectrics. The field energy method yields both the interaction energy between all charge pairs and the self energy of single charges, effectively accounting for the interaction with water. First, the dielectric boundary and mirror charges are determined for all charges of the solute. The energy is then given as a simple function of the interatomic distances, and the standard atomic partial charges and volumes. The interaction and self energy are shown to result from three-body and pairwise interactions. Both energy terms explicitly involve apolar atoms, revealing that apolar groups are also subject to electrostatic forces. We applied the field energy method to a spherical model protein. Comparison with the Kirkwood solution shows that errors are within a small percentage. As a further test, the field energy method was used to calculate the electrostatic potential of the protein superoxide dismutase. We obtained good agreement with the result from a program that implements the numerical finite difference algorithm. The field energy method provides a basis for energy minimization and dynamics programs that account for the solvent and screening effect of water at little computational expense.  相似文献   

10.
Motivated by experiments on condensed DNA phases in binary mixtures of water and a low-dielectric solute, we develop a theory for the electrostatic contribution to solute exclusion from a highly charged phase, within the continuum approximation of the medium. Because the electric field is maximum at the surface of each ion, the electrostatic energy is dominated by the Born energy; interactions between charges are of secondary importance. Neglecting interactions and considering only the competition between the Born energy and the free energy of mixing, we predict that low dielectric solutes are excluded from condensed DNA phases in water-cosolvent mixtures. This suggests that the traditional continuum electrostatic approach of modeling binary mixtures with a uniform dielectric constant needs to be modified. The linking of solute exclusion to solute dielectric properties also suggests a mechanism for predicting the electrostatic contribution to preferential hydration of polar and charged surfaces.  相似文献   

11.
Protein stability and function relies on residues being in their appropriate ionization states at physiological pH. In situ residue pK(a)s also provides a sensitive measure of the local protein environment. Multiconformation continuum electrostatics (MCCE) combines continuum electrostatics and molecular mechanics force fields in Monte Carlo sampling to simultaneously calculate side chain ionization and conformation. The response of protein to charges is incorporated both in the protein dielectric constant (epsilon(prot)) of four and by explicit conformational changes. The pK(a) of 166 residues in 12 proteins was determined. The root mean square error is 0.83 pH units, and >90% have errors of <1 pH units whereas only 3% have errors >2 pH units. Similar results are found with crystal and solution structures, showing that the method's explicit conformational sampling reduces sensitivity to the initial structure. The outcome also changes little with protein dielectric constant (epsilon(prot) 4-20). Multiconformation continuum electrostatics titrations show coupling of conformational flexibility and changes in ionization state. Examples are provided where ionizable side chain position (protein G), Asn orientation (lysozyme), His tautomer distribution (RNase A), and phosphate ion binding (RNase A and H) change with pH. Disallowing these motions changes the calculated pK(a).  相似文献   

12.
13.
The proper estimation of the influence of the many-body dynamic solvent microstructure on a pairwise electrostatic interaction (PEI) at the protein-solvent interface is very important for solving many biophysical problems. In this work, the PEI energy was calculated for a system that models the interface between a protein and an aqueous solvent. The concept of nonlocal electrostatics for interfacial electrochemical systems was used to evaluate the contribution of a solvent orientational polarization, correlated by the network of hydrogen bonds, into the PEI energy in proteins. The analytical expression for this energy was obtained in the form of Coulomb's law with an effective distance-dependent dielectric function. The asymptotic and numerical analysis carried out for this function revealed several features of dielectric heterogeneity at the protein-solvent interface. For charges located in close proximity to this interface, the values of the dielectric function for the short-distance electrostatic interactions were found to be remarkably smaller than those determined by the classical model, in which the solvent was considered as the uniform dielectric medium of high dielectric constant. Our results have shown that taking into consideration the dynamic solvent microstructure remarkably increases the value of the PEI energy at the protein-solvent interface.  相似文献   

14.
15.
A continuum hydration model based upon the atomic charges provided with the CFF91 force field [A. B. Schmidt and R. M. Fine (1994) Molecular Simulation, 13. 347–365] has been extended to the octanol–water transfer. The electrostatic component of the transfer free energy is calculated using the finite-difference solution to the Poisson–Boltzmann equation while the nonpolar contributions are assumed to be proportional to the solute-excluded volume in water. All atomic charges and radii besides the aromatic carbon radius are equal in both solvents. The octanol dielectric constant and the probe radius are the main fitting parameters defining the octanol phase. The model has been tested for 38 organic molecules related to the amino acid residues and generally provides a high accuracy. In particular, the mean unsigned error for N-acetyl amino acid amides is 0.5 kcal/mol. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
17.
Arora N  Bashford D 《Proteins》2001,43(1):12-27
In calculations involving many displacements of an interacting pair of biomolecules, such as brownian dynamics, the docking of a substrate/ligand to an enzyme/receptor, or the screening of a large number of ligands as prospective inhibitors for a particular receptor site, there is a need for rapid evaluation of the desolvation penalties of the interacting pair. Although continuum electrostatic treatments with distinct dielectric constants for solute and solvent provide an account of the electrostatics of solvation and desolvation, it is necessary to re-solve the Poisson equation, at considerable computational cost, for each displacement of the interacting pair. We present a new method that uses a formulation of continuum electrostatic solvation in terms of the solvation energy density and approximates desolvation in terms of the occlusion of this density. We call it the SEDO approximation. It avoids the need to re-solve the Poisson equation, as desolvation is now estimated by an integral over the occluded volume. Test calculations are presented for some simple model systems and for some real systems that have previously been studied using the Poisson equation approach: MHC class I protein-peptide complexes and a congeneric series of human immunodeficiency virus type 1 (HIV-1) protease--ligand complexes. For most of the systems considered, the trends and magnitudes of the desolvation component of interaction energies obtained using the SEDO approximation are in reasonable correlation with those obtained by re-solving the Poisson equation. In most cases, the error introduced by the SEDO approximation is much less than that of the often-used test-charge approximation for the charge-charge components of intermolecular interactions. Proteins 2001;43:12-27.  相似文献   

18.
Explicit solvent models in protein pKa calculations.   总被引:3,自引:1,他引:2       下载免费PDF全文
Continuum methods for calculation of protein electrostatics treat buried and ordered water molecules by one of two approximations; either the dielectric constant of regions containing ordered water molecules is equal to the bulk solvent dielectric constant, or it is equal to the protein dielectric constant though no fixed atoms are used to represent water molecules. A method for calculating the titration behavior of individual residues in proteins has been tested on models of hen egg white lysozyme containing various numbers of explicit water molecules. Water molecules were included based on hydrogen bonding, solvent accessibility, and/or proximity to titrating groups in the protein. Inclusion of water molecules significantly alters the calculated titration behavior of individual titrating sites, shifting calculated pKa values by up to 0.5 pH unit. Our results suggest that approximately one water molecule within hydrogen-bonding distance of each charged group should be included in protein electrostatics calculations.  相似文献   

19.
The importance of including different energy contributions in calculations of electrostatic energies in proteins is examined by calculating the intrinsic pKa values of the acidic groups of bovine pancreatic trypsin inhibitor. It appears that such calculations provide a powerful and revealing test; the relevant solvation energies of the ionized acids are of the order of -70 kcal/mol (1 cal = 4.184 J), and microscopic calculations that do not attempt to simulate the complete protein dielectric effect (including the surrounding solvent) can underestimate the solvation energy by as much as 50 kcal/mol. Reproducing correctly, by the same set of parameters, the solvation energies of ionized acids in different sites of a protein cannot be accomplished by including only part of the key energy contributions. The problems associated with macroscopic calculations are also considered and illustrated by the specific case of bovine pancreatic trypsin inhibitor. A promising approach is shown to be provided by a refinement of the previously developed Protein Dipoles Langevin Dipoles model. This model seems to represent consistently the microscopic dielectric of the protein and the surrounding water molecules. The model overcomes the problems associated with the macroscopic models (by treating explicitly the solvent molecules) and avoids the convergence problems associated with all-atom solvent models (by treating the average solvent polarization rather than averaging the actual polarization energy). This paper describes in detail the actual implementation of the model and examines its performance in evaluating intrinsic pKa values. Preliminary microscopic considerations of charge-charge interactions are presented.  相似文献   

20.
In this report we examine several solvent models for use in molecular dynamics simulations of protein molecules with the Discover program from Biosym Technologies. Our goal was to find a solvent system which strikes a reasonable balance among theoretical rigor, computational efficiency, and experimental reality. We chose phage T4 lysozyme as our model protein and analyzed 14 simulations using different solvent models. We tested both implicit and explicit solvent models using either a linear distance-dependent dielectric or a constant dielectric. Use of a linear distance-dependent dielectric with implicit solvent significantly diminished atomic fluctuations in the protein and kept the protein close to the starting crystal structure. In systems using a constant dielectric and explicit solvent, atomic fluctuations were much greater and the protein was able to sample a larger portion of conformational space. A series of nonbonded cutoff distances (9.0, 11.5, 15.0, 20.0 Å) using both abrupt and smooth truncation of the nonbonded cutoff distances were tested. The method of dual cutoffs was also tested. We found that a minimum nonbonded cutoff distance of 15.0 Å was needed in order to properly couple solvent and solute. Distances shorter than 15.0 Å resulted in a significant temperature gradient between the solvent and solute. In all trajectories using the proprietary Discover switching function, we found significant denaturation in the protein backbone; we were able to run successful trajectories only in those simulations that used no switching function. We were able to significantly reduce the computational burden by using dual cutoffs and still calculate a quality trajectory. In this method, we found that an outer cutoff distance of 15.0 Å and an inner cutoff distance of 11.5 worked well. While a 10 Å shell of explicit water yielded the best results, a 6 A shell of water yielded satisfactory results with nearly a 40% reduction in computational cost. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号