首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In dendrochronology, ring width has been a variable of choice when assessing the radial growth–climate association of tree species. We compared ring-width and event-year chronologies from a dendroclimatic perspective using both white oak (Quercus alba L.) and northern red oak (Quercus rubra L.). The study was conducted in three regions of the Ottawa valley in southern Québec. Twelve mixed red and white oak stands were selected and for each oak species, 12 chronologies were developed from tree-ring measurement and 12 others were derived using visual assessment of narrow or wide rings (event years). Ring-width and event-year chronologies gave almost identical results and revealed the prevalence of drought in the early growing season as the most influential factor in both species. This study emphasizes the utility of event-year chronologies in tree-ring studies and their comparativeness with ring width. Establishing event-year chronologies has the advantage of being faster than measuring ring width, it does not necessitate complex equipment and depending on the purpose of the study may prove to be at least comparable. The choice of species, their mean sensitivity, the ability to recognize narrow or large rings as well as the number of trees and sites to analyze may, however, be factors to consider when choosing to use event-year chronologies over the more commonly used ring-width ones.  相似文献   

2.
T. R. Crow 《Oecologia》1992,91(2):192-200
Summary I studied the survival and development of a 1986 cohort of northern red oak (Quercus rubra L.) seedlings growing under a variety of overstory and microsite conditions in a northern hardwood forest dominated by northern red oak, red maple (Acer rubrum L.) paper birch (Betula papyrifera Marsh.), and scattered white pine (Pinus strobus L.). Fifty naturally regenerating seedlings of oak were randomly selected in each of three canopy classes: no overstory, partial overstory, and complete overstory. Growth and mortality were measured for six years. Seedling height growth decreased with overstory density, with less growth evident with even a partial overstory. Seedling survival also declined with overstory density and depended on microtopography to a lesser extent. After six years, 92% of the seedlings survived in the open, compared to 54% under the partial overstory, and 36% under the complete overstory. The open environment, in which woody and herbaceous regrowth formed a low canopy reducing light intensities to about 50% of full sunlight, provided a favorable site for the growth and survival of northern red oak.  相似文献   

3.
Oaks (Quercus spp.) represent the most important broadleaf genus with respect to forest-shaping tree species in the Mediterranean. Considering future climate scenarios (increased drought conditions), the identification of drought tolerant oak species is of great importance for future forest management in this region. The objective of the study was the comparison of physiological status of three economically and ecologically valuable oak species (Quercus ilex, Quercus frainetto and Quercus pubescens) co-existing in natural coppice stands in NE Greece, in response to seasonal drought stress. Measurements were conducted between June and September 2016, every 15–20 days until leaf falling. The parameters studied were predawn leaf water potential and fast chlorophyll fluorescence induction curves (OJIP test), chlorophyll content, and relative water content. Meteorological data from the area were also collected. Photosynthetic parameters such as performance indices (PIabs and PItot) reacted to summer drought conditions, with Q. frainetto showing the lowest values. The discrepancy between species increased with duration of drought period. Q. frainetto revealed the lowest predawn water potential values. The results indicate that Q. frainetto is less suitable for future forestry applications in the studied climate/elevation zone than Q. pubescens and Q. ilex.  相似文献   

4.
In this study, we present the boundaries of five dendrochronologically homogeneous regions of pedunculate oak (Quercus robur L.) and the master chronologies for them for the period 1703–2018 based on 27 tree-ring chronologies from different locations around Belarus. The average length of the master chronologies ranges from 70 to 310 years. Our research shows that the radial increment of a pedunculate oak in Belarus is primarily limited by the previous year’s August-September temperature, by the current year’s May temperature and by June precipitation. Oak growth in northern Belarus is mostly limited by air temperature, whereas precipitation plays more significant role in central and southern parts of the country. The most unfavorable years for oak growth in Belarus were 1940 and 1952, both of which were years when a very frosty winter was followed by a droughty summer. The results provide an important achievement in Belarusian dendrochronology, since they represent a significant breakthrough for Eastern Europe, where there is a considerable lack of dendroclimatic researches of broadleaved species.  相似文献   

5.
Within their natural distribution ranges, plant species exhibit a genetic structure that has been created by global climate change and natural selection over long periods. This genetic structure needs to be conserved for sustainable use of genetic resources. To conserve local forests with different genetic structures, genetic guidelines for seed and seedling transfer in individual species are necessary. Genetic guidelines have been published for 43 Japanese tree species using population genetic data; however, for practical use, more detailed genetic borders between important genetic lineages should be clarified to inform seed collection and planting. Thus, we investigated in detail the genetic borders between two important Japanese oak species, Quercus serrata and Quercus crispula, in the Chubu region of Japan using chloroplast and nuclear DNA markers, and we discuss the factors that influenced border creation using the results of species distribution modeling (SDM). The chloroplast DNA (cpDNA) haplotype was clearly different within the Chubu region of Japan but the difference in nuclear DNA between northern and southern haplotype populations was very small, both in Q. serrata and Q. crispula. The results of SDM showed that during the last glacial maximum (LGM) Q. serrata was distributed mostly along the coastline but Q. crispula was distributed not only along the coast but also in mountainous areas further inland. The cpDNA genetic borders of these two oak species are complex and seem to have been influenced by topography and their distribution during the LGM. We propose and discuss genetic guidelines for these two oak species based on the results of this study.  相似文献   

6.
Given the low intraspecific chloroplast diversity detected in northern red oak (Quercus rubra L.), more powerful genetic tools are necessary to accurately characterize Q. rubra chloroplast diversity and structure. We report the sequencing, assembly, and annotation of the chloroplast genome of northern red oak via pyrosequencing and a combination of de novo and reference-guided assembly (RGA). Chloroplast DNA from 16 individuals was separated into four MID-tagged pools for a Genome Sequencer 20 quarter-run (Roche Life Sciences, Indianapolis, IN, USA). A four-step assembly method was used to generate the Q. rubra chloroplast consensus sequence: (1) reads were assembled de novo into contigs, (2) de novo contigs were aligned to a reference genome and merged to produce a consensus sequence, (3) the consensus sequence was aligned to the reference sequence and gaps between contigs were filled with reference sequence to generate a "pseudoreference", and (4) reads were mapped to the pseudoreference using RGA to generate the draft chloroplast genome. One hundred percent of the pseudoreference sequence was covered with a minimum coverage of 2× and an average coverage of 43.75×. The 161,304-bp Q. rubra chloroplast genome draft sequence contained 137 genes and one rps19 pseudogene. The sequence was compared to that of Quercus robur and Q. nigra with 951 and 186 insertion/deletion or SNP polymorphisms detected, respectively. A total of 51 intraspecific polymorphisms were detected among four northern red oak individuals. The fully sequenced and annotated Q. rubra chloroplast genome containing locations of interspecific and intraspecific polymorphisms will be essential for studying population differentiation, phylogeography, and evolutionary history of this species as well as meeting management goals such as monitoring reintroduced populations, tracking wood products, and certifying seed lots and forests.  相似文献   

7.
Different tree species growing in the same area may have different, or even contrasting growth responses to climate change. Korean pine (Pinus koraiensis) and Mongolia oak (Quercus mongolica) are two crucial tree species in temperate forest ecosystems. Six tree-ring chronologies for Korean pine and Mongolia oak were developed by using the zero-signal method to explore their growth response to the recent climate warming in northeast China. Results showed that Mongolia oak radial growth was mainly limited by precipitation in the growing season, while Korean pine growth depended on temperature condition, especially monthly minimum temperature. With the latitude decrease, the relationships between Korean pine growth and monthly precipitation changed from negative to positive correlation, while the positive correlation with monthly temperature gradually weakened. In the contrary, Mongolia oak growth at the three sampling sites was significantly and positively correlated with precipitation in the growing season, while it was negatively correlated with temperature and this relationship decreased with the latitude decrease. The radial growth of Korean pine at different sites showed a clearly discrepant responses to the recent warming since 1980. Korean pine growth in the north site increased with the temperature increase, decreased in the midwest site, and almost unchanged in the southeast site. Conversely, Mongolia oak growth was less affected by the recent climate warming. Our finding suggested that tree species trait and sites are both key factors that affect the response of tree growth to climate change. In addition, the suitable distribution area of Korean pine may be moved northward with the continued global warming in the future, but Mongolia oak may not shift in the same way.  相似文献   

8.
Taylor  Scott O.  Lorimer  Craig G. 《Plant Ecology》2003,167(1):71-88
Gap capture methods predict future forest canopy species composition from the tallest trees growing in canopy gaps rather than from random samples of shaded understory trees. We used gap capture methods and a simulation approach to forecast canopy composition in three old oak forests (Quercus spp.) on dry-mesic sites in southern Wisconsin, USA. In the simulation, a gap sapling is considered successful if it exceeds a threshold height of 13–17 m (height of maximum crown width of canopy trees) before its crown center can be overtopped by lateral crown growth of mature trees. The composition of both the tallest gap trees and simulated gap captures suggests that 68–90% of the next generation of canopy trees in the stands will consist of non-Quercus species, particularly Ulmus rubra, Carya ovata and Prunus serotina. Quercus species will probably remain as a lesser stand component, with Quercus alba and Quercus rubra predicted to comprise about 19% of successful gap trees across the three stands. Several methods of predicting future canopy composition gave similar results, probably because no gap opportunist species were present in these stands and there was an even distribution of species among height strata in gaps. Gap trees of competing species already average 11–13 m tall, and mean expected time for these trees to reach full canopy height is only 19 years. For these reasons, we suggest that dominance will shift from oaks to other species, even though late successional species (e.g., Acer and Tilia) are not presently common in the understories of these stands.  相似文献   

9.
Abstract

In this study, leaf morphology was assessed in a mixed oak stand (western France) using two geometric morphometric (landmark and outline) datasets and one dataset of 19 leaf measures. Adult oaks (817 oaks), comprising four white oak species (Quercus petraea, Q. robur, Q. pubescens and Q. pyrenaica), were sampled for DNA extraction and genetic analysis (nuclear microsatellites). Leaf morphology was assessed on 336 oaks, comprising pure species and hybrids as determined by genetic assignment. This comparative study of oak leaf morphology, based on the use of two free size geometric morphometric methods and a set of leaf measurements, combined with the genetic assignment of individuals to pure species or hybrids, provided information about the differences among species and the intermediate leaf morphology of their hybrids.  相似文献   

10.
Summary There is no correlation between protein-precipitating capacity and either total phenolic or proanthocyanidin content of extracts of mature foliage from six species of oaks: Quercus alba (white oak), Q. bicolor (swamp white oak), Q. macrocarpa (bur oak), Q. palustris (pin oak), Q. rubra (red oak), and Q. velutina (black oak). It is argued that studies which probe the role of tannins in the selection and utilization of food by herbivores should include a protein-precipitation assay, since such an assay provides a measure of the property of tannins which is presumed to contribute to their utility as defensive compounds. A convenient modification of the bovine serum albumin (BSA) precipitation assay, which measures the amount of protein precipitated when a plant extract is added to a BSA solution, is described. Advantages of this procedure recommend its routine adoption in studies of the role of tannins in plant-herbivore interactions.  相似文献   

11.
Aim In this study, we evaluate the importance of the mean earlywood vessel size of oaks as a potential proxy for climate in mesic areas. Location The study was conducted in Switzerland at three forest sites dominated by oak (Quercus petraea and Q. pubescens). The three sites were in different climatic zones, varying mainly in terms of precipitation regime. Methods Three 50‐year‐long site chronologies of mean earlywood vessel size and tree‐ring widths were obtained at each site and related to monthly meteorological records in order to identify the main variables controlling growth. The responses of mean vessel size to climate were compared with those of the width variables to evaluate the potential climatic information recorded by the earlywood vessels. Results The results show that the mean vessel size has a different and stronger response to climate than ring‐width variables, although its common signal and year‐to‐year variability are lower. This response is better in particular at mesic sites, where it is linked to precipitation during spring, i.e. at the time of vessel formation, and is probably related to the occurrence of only a few processes controlling vessel growth, whereas radial increment is controlled by multiple and varying factors. Main conclusions The mean earlywood vessel size of oak appears to be a promising proxy for future climate reconstructions of mesic sites, where radial growth is not controlled by a single limiting factor.  相似文献   

12.
Abstract.
  • 1 The abundance, survival, and causes of mortality of Cameraria hamadryadella (Clemens) (Lepidoptera: Gracillariidae) were examined on four host plant species in Virginia, U.S.A. Quercus alba L. and Q.rubra L. are native within the geographic range of C.hamadryadella, and Q.robur L. and Q.benderi Baenitz are exotic. Q.robur is native to Europe, North Africa, and Asia and was probably introduced prior to 1850, and Q.benderi is of hybrid origin and introduced to cultivation before 1900. Q.alba and Q.robur are in the subgenus Lepidobalanus (white oaks), and Q.rubra and Q.benderi are in the subgenus Erythrobalanus (red oaks).
  • 2 Larval mines of C. hamadryadella were abundant on both white oak species, including the exotic Q.robur, but were rare on host plants in the red oak subgenus. Un-hatched eggs of C.hamadryadella were not observed on red oaks. Other observations on host distribution indicate that C.hamadryadella is rarely found on red oaks. These observations are interpreted as circumstantial evidence that C. hamadryadella generally avoids ovipositing on red oaks.
  • 3 Survival of C.hamadryadella to the adult stage was similar among all host species, but larvae tended to survive longer on hosts in the red oak subgenus. The observation of higher survival rates of early instar larvae on red oaks suggests that no nutritional or secondary chemical barrier reinforces the observed pattern of oviposition.
  • 4 Significant differences in the distribution of the causes of mortality were detected between native and exotic host plant species. Larvae and pupae on native hosts were more likely to die because of predation, while those on exotic host plants were more likely to die because of parasitism and host feeding by adult female parasitoids. This pattern could arise because parasitoids prefer to forage on exotic host plants or because predators avoid foraging on exotic plants.
  • 5 This study shows for C. hamadryadella that the only barriers to colonization and use of exotic hosts, in the white and red oak subgenera, are the presence of cues sufficient to stimulate oviposition and/or the absence of cues to deter oviposition. It also suggests that the presence of closely related native host plants in the region of introduction will increase the probability that exotic plants will be colonized by phytophagous insects.
  相似文献   

13.
14.
Lumaret R  Mir C  Michaud H  Raynal V 《Molecular ecology》2002,11(11):2327-2336
Variation in the lengths of restriction fragments (RFLPs) of the whole chloroplast DNA molecule was studied in 174 populations of Quercus ilex L. sampled over the entire distribution of this evergreen and mainly Mediterranean oak species. By using five endonucleases, 323 distinct fragments were obtained. From the 29 and 17 cpDNA changes identified as site and length mutations, respectively, 25 distinct chlorotypes were distinguished, mapped and treated cladistically with a parsimony analysis, using as an outgroup Q. alnifolia Poech, a closely related evergreen oak species endemic to Cyprus where Q. ilex does not grow. The predominant role of Q. ilex as maternal parent in hybridization with other species was reflected by the occurrence of a single very specific lineage of related chlorotypes, the most ancestral and recent ones being located in the southeastern and in the northwestern parts of the species’ geographical distribution, respectively. The lineage was constituted of two clusters of chlorotypes observed in the ‘ilex’ morphotyped populations of the Balkan and Italian Peninsulas (including the contiguous French Riviera), respectively. A third cluster was divided into two subclusters identified in the ‘rotundifolia’ morphotyped populations of North Africa, and of Iberia and the adjacent French regions, respectively. Postglacial colonization probably started from three distinct southerly refugia located in each of the three European peninsulas, and a contact area between the Italian and the Iberian migration routes was identified in the Rhône valley (France). Chlorotypes identical or related to those of the Iberian cluster were identified in the populations from Catalonia and the French Languedoc region, which showed intermediate morphotypes, and in the French Atlantic populations which possessed the ‘ilex’ morphotype, suggesting the occurrence of adaptive morphological changes in the northern part of the species’ distribution.  相似文献   

15.
Ectomycorrhizal (ECM) communities were assessed on a 720 m2 plot along a chronosequence of red oak (Quercus rubra) stands on a forest reclamation site with disturbed soil in the lignite mining area of Lower Lusatia (Brandenburg, Germany). Adjacent to the mining area, a red oak reference stand with undisturbed soil was investigated reflecting mycorrhiza diversity of the intact landscape. Aboveground, sporocarp surveys were carried out during the fruiting season in a 2-week interval in the years 2002 and 2003. Belowground, ECM morphotypes were identified by comparing sequences of the internal transcribed spacer regions from nuclear rDNA with sequences from the GenBank database. Fifteen ECM fungal species were identified as sporocarps and 61 belowground as determined by morphological/anatomical and molecular analysis of their ectomycorrhizas. The number of ECM morphotypes increased with stand age along the chronosequence. However, the number of morphotypes was lower in stands with disturbed soil than with undisturbed soil. All stands showed site-specific ECM communities with low similarity between the chronosequence stands. The dominant ECM species in nearly all stands was Cenococcum geophilum, which reached an abundance approaching 80% in the 21-year-old chronosequence stand. Colonization rate of red oak was high (>95%) at all stands besides the youngest chronosequence stand where colonization rate was only 15%. This supports our idea that artificial inoculation with site-adapted mycorrhizal fungi would enhance colonization rate of red oak and thus plant growth and survival in the first years after outplanting.  相似文献   

16.
Aims Both human and non‐human determinants have shaped Mediterranean forest structure over the last few millennia. The effects of recent human activities on forest composition, however, remain poorly understood. We quantified changes in forest composition during the past century in the mixed forests of Quercus suber (cork oak) and Q. canariensis (Algerian oak), and explored the effects of forest management and environmental (climate, topography) factors on forest structure at various spatial and temporal scales. Location Mountains north of the Strait of Gibraltar (southern Spain). Methods First, we quantified 20th‐century changes in species composition from a series of inventories in nine mixed forests (c. 40,000 ha), and examined them in terms of the management practices and environmental conditions. Second, we analysed present‐day Q. suber and Q. canariensis stand structure along environmental gradients at two spatial scales: (1) that of the forest landscape (c. 284 ha), combining local inventories and topographic variables and using a digital elevation model; and (2) regional (c. 87,600 km2), combining data from the Spanish Forest Inventory for the Andalusia region and estimates of climatic variables. Results Historical data indicate anthropogenic changes in stand composition, revealing a sharp increase in the density of cork oaks over the last century. Forest management has favoured this species (for cork production) at the expense of Q. canariensis. The impact of management is imprinted on the present‐day forest structure. The abundance of both species increases with annual mean precipitation, and they coexist above 800 mm (the minimum threshold for Q. canariensis). Quercus suber dominates in most of the stands, and species segregation in the landscape is associated with the drainage network, Q. canariensis being clearly associated with moister habitats near streams. Main conclusions Our study quantitatively exemplifies a recent human‐mediated shift in forest composition. As a result of forest management, the realized niche of the cork oak has been enlarged at the expense of that of Q. canariensis, providing further evidence for humans as major drivers of oak forest composition across the Mediterranean. Recent regeneration problems detected in Q. suber stands, a reduced demand for wood products, conservation policies, and climate change augur new large‐scale shifts in forest composition.  相似文献   

17.
  1. Pure forests are often seen as being more prone to damage by specialist pest insects than mixed forests, and particularly mixed forests associating host and nonhost species. We addressed the effect of tree diversity on oak colonization and defoliation by a major specialist pest, the oak processionary moth (OPM)
  2. We quantified the number of male OPM moths captured and larval defoliation in pure stands of two oak host species (Quercus robur and Quercus petraea) and in mixed stands associating the two oak species or each oak species with another nonhost broadleaved species. We conducted two complementary studies to test the effect of host species and stand composition: (i) we used pheromone trapping to compare the number of males OPM captured throughout the distribution of oak hosts in France and (ii) we noted the presence of OPM nests and estimated defoliation in mature forests of north‐eastern France.
  3. Oak species and stand composition significantly influenced the number of male OPM captured and defoliation by OPM larvae. Quercus petraea was consistently more attractive to and more defoliated by OPM than Q. robur. Both oak trees were attacked more in pure stands than in mixed stands, in particular mixed stands associating oaks with another (nonhost) broadleaved species.
  4. The results of the present study support the view that mixed forests are more resistant to specialist pest insects than pure stands, and also indicate that this trend depends on forest composition. Our study provides new insights into OPM ecology and has potential implications for forest management, including the management of urban forests where OPM causes serious human health issues.
  相似文献   

18.
Summary The allelopathic effects of interrupted fern frond leachates on ectomycorrhizal (inoculated) and nonmycorrhizal (noninoculated) northern red oak (Quercus rubra L.) seedlings were investigated. Container-grown northern red oak was inoculated with vegetative mycelium ofSuillus luteus L. Fr. following acorn germination. Noninoculated control seedlings were also maintained. Seedlings were grown in a glasshouse under full sunlight or shaded (25% of full sunlight) conditions. Leachate or deionized water solutions were applied to seedlings eleven times over a 91-day period to simulate a rainfall induced transfer of allelopathic chemicals from fern fronds to the soil. Fern frond leachates significantly reduced seedling survival, however, inoculated seedlings showed less mortality. Chromium concentrations of pooled lateral root or leaf tissue were comparatively higher in tissues exhibiting greater mortality. Root biomass was reduced by fern fern frond leachate applications. Seedling biomass was not significantly affected by fungal inoculation. Our results confirm previous documentation of the allelopathic potential of ferns, and suggest that ectomycorrhizal fungi may ameliorate allelopathic effects of ferns on northern red oak seedling survival and growth.  相似文献   

19.
Phenotypic plasticity and developmental instability in leaf traits are common in oak species but the role of environmental factors is not well understood. To decipher possible correlations between different leaf traits and effects of the position of leaves within the tree canopy, we quantified the plasticity of three leaf traits of 30 trees of Quercus alba L., Quercus palustris Muench and Quercus velutina Lam. We hypothesized that trees could modify the shape of their leaves for better adaptation to the variable microclimate within the canopy. Our results demonstrated that the south and north outer leaves were significantly smaller, more lobed and denser than those situated in the inner canopy. The order of leaves on the branch accounted for the plasticity of leaf traits in Q. alba only. Plasticity of lobing in Q. alba and Q. velutina depended on the height of the trees. We detected fluctuating asymmetry (FA) in all three species, but the source of variation depended on branch position in Q. velutina only. FA was more pronounced in north-facing leaves. Plasticity of the leaf traits ranged from small to medium. Plasticity of leaf area and leaf mass per area (LMA) depended on the branch position. However, the plasticity of lobation was not affected by the location of a branch within the tree canopy. Quercus alba and Q. palustris had similar plastic responses but the plasticity of Q. velutina was significantly smaller. We concluded that individual plants detect and cope with environmental stress through vegetative organ modification.  相似文献   

20.
Seasonal changes in physiological and biochemical parameters were studied in 35-, 55- and 140-year-old trees of Turkey oak (Quercus cerris L.) and Hungarian oak (Q. frainetto Ten.), growing in natural stands in Eastern Balkan Mountains (Bulgaria). During the seasonal drought period (August), assimilation activity, transpiration rate, stomatal conductance and water potential had a seasonal minimum in all the studied tree ages and species. The foliar concentrations of glutathione, ascorbate, α-tocopherol, as well as photosynthetic pigments in oak leaves were significantly affected by season. With the increasing age of the studied trees, we observed a decrease of the physiological activity and an increase of the antioxidants’ accumulation. Both the species were drought tolerant and anisohydric, where Q. frainetto exhibited higher rates of gas exchange than Q. cerris. Moreover, they differed in the extent of increase in the foliar antioxidants and carotenoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号