首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming activity of mutant human p53 alleles   总被引:6,自引:0,他引:6  
Mutant forms of the p53 gene have been shown to cooperate with an activated ras gene in transforming primary cells in culture. The aberrant proteins encoded by p53 mutants are thought to act in a dominant negative manner in these assays. In vivo data, however, reveal that where p53 has undergone genetic change in tumors, both alleles have been affected. We previously identified a case of human acute myelogenous leukemia (AML) in which both alleles of the p53 gene had undergone independent missense mutations (at codons 135 cys to ser and 246 met to val). In these blasts, p53 mutations appear to be acting recessively. We have assayed the transforming potential of these p53 mutations, as well as that of another mutation at codon 273, also identified in a human neoplasm. Both mutations from the AML blasts (codon 135 and codon 246) confer transforming ability on the mutant protein. While transformation assays may define functionally different subsets of p53 mutations, the overexpression phenotype of mutants in this assay may not accurately reflect the pathological effects of p53 mutations in vivo.  相似文献   

2.
3.
Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome   总被引:13,自引:0,他引:13  
Olive KP  Tuveson DA  Ruhe ZC  Yin B  Willis NA  Bronson RT  Crowley D  Jacks T 《Cell》2004,119(6):847-860
The p53 tumor suppressor gene is commonly altered in human tumors, predominantly through missense mutations that result in accumulation of mutant p53 protein. These mutations may confer dominant-negative or gain-of-function properties to p53. To ascertain the physiological effects of p53 point mutation, the structural mutant p53R172H and the contact mutant p53R270H (codons 175 and 273 in humans) were engineered into the endogenous p53 locus in mice. p53R270H/+ and p53R172H/+ mice are models of Li-Fraumeni Syndrome; they developed allele-specific tumor spectra distinct from p53+/- mice. In addition, p53R270H/- and p53R172H/- mice developed novel tumors compared to p53-/- mice, including a variety of carcinomas and more frequent endothelial tumors. Dominant effects that varied by allele and function were observed in primary cells derived from p53R270H/+ and p53R172H/+ mice. These results demonstrate that point mutant p53 alleles expressed under physiological control have enhanced oncogenic potential beyond the simple loss of p53 function.  相似文献   

4.
To clarify whether a single oncogene can transform primary cells in culture, we compared the transforming effect of a recombinant retrovirus (ZSV) containing the v-src gene in rat embryo fibroblasts (REFs) to that in the rat cell line 3Y1. In the focus assay, REFs exhibited resistance to transformation as only six foci were observed in the primary cultures as opposed to 98 in 3Y1 cells. After G418 selection, efficiency of transformation was again somewhat lower with REFs compared to that with 3Y1 cells, but the number of G418-resistant REF colonies was much greater than the number of foci in REF cultures. Furthermore, while 98% of G418-resistant colonies of ZSV-infected REFs were morphologically transformed, only 25% were converted to anchorage- independent growth, as opposed to 100% conversion seen in ZSV-infected 3Y1 cells. The poor susceptibility of REFs to anchorage-independent transformation did not involve differences in expression and subcellular distribution of p60v-src, or its kinase activity in vitro and in vivo. It rather reflected a property of the primary cultures, as cloning of REFs before ZSV infection demonstrated that only 2 out of 6 REF clones tested were permissive for anchorage-independent growth. The nonpermissive phenotype was dominant over the permissive one in somatic hybrid cells, and associated with organized actin filament bundles and a lower growth rate, both before and after ZSV infection. These results indicate that the poor susceptibility of REFs to anchorage-independent transformation by p60v-src reflects the heterogeneity of the primary cultures. REFs can be morphologically transformed by p60v-src with high efficiency but only a small fraction is convertible to anchorage- independent growth. REF resistance seems to involve the presence of a suppressor factor which may emerge from REF differentiation during embryonic development.  相似文献   

5.
Mutation of the TP53 tumor suppressor gene is the most common genetic alteration in cancer, and almost 1000 alleles have been identified in human tumors. While virtually all TP53 mutations are thought to compromise wild type p53 activity, the prevalence and recurrence of missense TP53 alleles has motivated countless research studies aimed at understanding the function of the resulting mutant p53 protein. The data from these studies support three distinct, but perhaps not necessarily mutually exclusive, mechanisms for how different p53 mutants impact cancer: first, they lose the ability to execute wild type p53 functions to varying degrees; second, they act as a dominant negative (DN) inhibitor of wild type p53 tumor-suppressive programs; and third, they may gain oncogenic functions that go beyond mere p53 inactivation. Of these possibilities, the gain of function (GOF) hypothesis is the most controversial, in part due to the dizzying array of biological functions that have been attributed to different mutant p53 proteins. Herein we discuss the current state of understanding of TP53 allele variation in cancer and recent reports that both support and challenge the p53 GOF model. In these studies and others, researchers are turning to more systematic approaches to profile TP53 mutations, which may ultimately determine once and for all how different TP53 mutations act as cancer drivers and whether tumors harboring distinct mutations are phenotypically unique. From a clinical perspective, such information could lead to new therapeutic approaches targeting the effects of different TP53 alleles and/or better sub-stratification of patients harboring TP53 mutant cancers.Subject terms: Cancer genetics, Tumour-suppressor proteins  相似文献   

6.
Tumor suppressor genes are generally viewed as being recessive at the cellular level, so that mutation or loss of both tumor suppressor alleles is a prerequisite for tumor formation. The tumor suppressor gene, p53, is mutated in approximately 50% of human sporadic cancers and in an inherited cancer predisposition (Li-Fraumeni syndrome). We have analyzed the status of the wild-type p53 allele in tumors taken from p53-deficient heterozygous (p53+/-) mice. These mice inherit a single null p53 allele and develop tumors much earlier than those mice with two functional copies of wild-type p53. We present evidence that a high proportion of the tumors from the p53+/- mice retain an intact, functional, wild-type p53 allele. Unlike p53+/- tumors which lose their wild-type allele, the tumors which retain an intact p53 allele express p53 protein that induces apoptosis following gamma-irradiation, activates p21(WAF1/CIP1) and Mdm2 expression, represses PCNA expression (a negatively regulated target of wild-type p53), shows high levels of binding to oligonucleotides containing a wild-type p53 response element and prevents chromosomal instability as measured by comparative genomic hybridization. These results indicate that loss of both p53 alleles is not a prerequisite for tumor formation and that mere reduction in p53 levels may be sufficient to promote tumorigenesis.  相似文献   

7.
8.
The v-Abl protein encoded by Abelson murine leukemia virus (Ab-MLV) induces transformation of pre-B cells via a two-stage process. An initial proliferative phase during which cells with limited tumorigenic potential expand is followed by a crisis period marked by high levels of apoptosis and erratic growth. Transformants that survive this phase emerge as fully malignant cells and usually contain mutations that disable the p53 tumor suppressor pathway. Consistent with the importance of p53 in this process, pre-B cells from p53 null animals bypass crisis. Thus, the transformation process reflects a balance between signals from the v-Abl protein that drive transformation and those coming from the cellular response to inappropriate growth. One prediction of this hypothesis is that Ab-MLV mutants that are compromised in their ability to transform cells may be less equipped to overcome the effects of p53. To test this idea, we examined the ability of the P120/R273K mutant to transform pre-B cells from wild-type, p53 null, and Ink4a/Arf null mice. The SH2 domain of the v-Abl protein encoded by this mutant contains a substitution that affects the phosphotyrosine-binding pocket, and this mutant is compromised in its ability to transform NIH 3T3 and pre-B cells, especially at 39.5 degrees C. Our data reveal that loss of p53 or Ink4a/Arf locus products complements the transforming defect of the P120/R273K mutant, but it does not completely restore wild-type function. These results indicate that one important transforming function of v-Abl proteins is overcoming the effects of a functional p53 pathway.  相似文献   

9.
Tumor suppressor p53: analysis of wild-type and mutant p53 complexes.   总被引:28,自引:7,他引:21       下载免费PDF全文
It has been suggested that the dominant effect of mutant p53 on tumor progression may reflect the mutant protein binding to wild-type p53, with inactivation of suppressor function. To date, evidence for wild-type/mutant p53 complexes involves p53 from different species. To investigate wild-type/mutant p53 complexes in relation to natural tumor progression, we sought to identify intraspecific complexes, using murine p53. The mutant phenotype p53-246(0) was used because this phenotype is immunologically distinct from wild-type p53-246+ and thus permits immunological analysis for wild-type/mutant p53 complexes. The p53 proteins were derived from genetically defined p53 cDNAs expressed in vitro and also from phenotypic variants of p53 expressed in vivo. We found that the mutant p53 phenotype was able to form a complex with the wild type when the two p53 variants were cotranslated. When mixed in their native states (after translation), the wild-type and mutant p53 proteins did not exhibit any binding affinity for each other in vitro. Under identical conditions, complexes of wild-type human and murine p53 proteins were formed. For murine p53, both the wild-type and mutant p53 proteins formed high-molecular-weight complexes when translated in vitro. This oligomerization appeared to involve the carboxyl terminus, since truncated p53 (amino acids 1 to 343) did not form complexes. We suggest that the ability of the mutant p53 phenotype to complex with wild type during cotranslation may contribute to the transforming function of activated mutants of p53 in vivo.  相似文献   

10.
The invasiveness of tumour cells depends on changes in cell shape, polarity and migration. Mutant p53 induces enhanced tumour metastasis in mice, and human cells overexpressing p53R273H have aberrant polarity and increased invasiveness, demonstrating the 'gain of function' of mutant p53 in carcinogenesis. We hypothesize that p53R273H interacts with mutant p53-specific binding partners that control polarity, migration or invasion. Here we analyze the p53R273H interactome using stable isotope labelling by amino acids in cell culture and quantitative mass spectrometry, and identify at least 15 new potential mutant p53-specific binding partners. The interaction of p53R273H with one of them--nardilysin (NRD1)--promotes an invasive response to heparin binding-epidermal growth factor-like growth factor that is p53R273H-dependant but does not require Rab coupling protein or p63. Advanced proteomics has thus allowed the detection of a new mechanism of p53-driven invasion.  相似文献   

11.
Mutant p53 is not only deficient in tumor suppression but also acquires additional activity, called gain of function. Mutant p53 gain of function is recapitulated in knock-in mice that carry one null allele and one mutant allele of the p53 gene. These knock-in mice develop aggressive tumors compared with p53-null mice. Recently, we and others showed that tumor cells carrying a mutant p53 are addicted to the mutant for cell survival and resistance to DNA damage. To further define mutant p53 gain of function, we used the MCF-10A three-dimensional model of mammary morphogenesis. MCF-10A cells in three-dimensional culture undergo a series of morphological changes and form polarized and growth-arrested spheroids with hollow lumen, which resembles normal glandular architectures in vivo. Here, we found that endogenous wild-type p53 in MCF-10A cells was not required for acinus formation, but knockdown of endogenous wild-type p53 (p53-KD) led to partial clearance of cells in the lumen due to decreased apoptosis. Consistent with this, p53-KD altered expression patterns of the cell adhesion molecule E-cadherin, the cytoskeletal marker β-catenin, and the extracellular matrix protein laminin V. We also found that ectopic expression of the mutant G245S led to a phenotype similar to p53-KD, whereas a combination of ectopic expression of siRNA-resistant G245S with p53-KD led to a less cleared lumen. In contrast, ectopic expression of mutant R248W, R175H, and R273H disrupted normal acinus architectures with filled lumen and led to formation of irregular and multiacinus structures regardless of p53-KD. In addition, these mutants altered normal expression patterns and/or levels of E-cadherin, β-catenin, laminin V, and tight junction marker ZO-1. Furthermore, epithelial-to-mesenchymal transitions (EMT) markers, Snail, Slug, and Twist, were highly induced by mutant p53 and/or p53-KD. Together, we postulate that EMT represents a mutant p53 gain of function and mutant p53 alters cell polarity via EMT.  相似文献   

12.
The proto-oncogene Wnt-1 encodes a cysteine-rich, secretory glycoprotein implicated in virus-induced mouse mammary cancer and intercellular signaling during vertebrate neural development. To attempt to correlate structural motifs of Wnt-1 protein with its function, 12 mutations were introduced singly and in several combinations into the coding sequence of Wnt-1 cDNA by site-directed mutagenesis. Mutant alleles in a retroviral vector were tested for their ability to transform the mouse mammary epithelial cell line C57MG in two ways: by direct infection of C57MG cells and by infection of NIH3T3 cells that serve as donors of Wnt-1 protein to adjacent C57MG cells in a secretion-dependent (paracrine) assay. In addition, the synthesis and secretion of mutant proteins were monitored in multiple cell types by immunological assays. Deletion of the signal peptide demonstrated that transformation in both direct and paracrine assays depends upon entry of Wnt-1 protein into the endoplasmic reticulum. Changes in potential proteolytic processing sites (two basic dipeptides and a probable signal peptidase cleavage site) did not adversely impair biological activity or protein processing and uncovered a second site for cleavage by signal peptidase. Replacement of each of the four asparagine-linked glycosylation sites did not affect transforming activity at normal temperatures, but one glycosylation site mutant was found to be temperature-sensitive for transformation. An allele encoding a protein that lacks all four glycosylation sites was also transformation competent. In two of four cases, substitution of serine for a cysteine residue impaired transforming activity at the usual temperature, and transformation was temperature sensitive in a third case, implying that at least some of the highly conserved cysteine residues are important for Wnt-1 function.  相似文献   

13.
We have solved the crystal structures of three oncogenic mutants of the core domain of the human tumor suppressor p53. The mutations were introduced into a stabilized variant. The cancer hot spot mutation R273H simply removes an arginine involved in DNA binding without causing structural distortions in neighboring residues. In contrast, the "structural" oncogenic mutations H168R and R249S induce substantial structural perturbation around the mutation site in the L2 and L3 loops, respectively. H168R is a specific intragenic suppressor mutation for R249S. When both cancer mutations are combined in the same molecule, Arg(168) mimics the role of Arg(249) in wild type, and the wild type conformation is largely restored in both loops. Our structural and biophysical data provide compelling evidence for the mechanism of rescue of mutant p53 by intragenic suppressor mutations and reveal features by which proteins can adapt to deleterious mutations.  相似文献   

14.
Mutation of the p53 tumor suppressor gene is the most common genetic alteration in human cancer, and tumors that express mutant p53 may be more aggressive and have a worse prognosis than p53-null cancers. Mutant p53 enhances tumorigenicity in the absence of a transdominant negative mechanism, and this tumor-promoting activity correlates with its ability to transactivate reporter genes in transient transfection assays. However, the mechanism by which mutant p53 functions in transactivation and its endogenous cellular targets that promote tumorigenicity are unknown. Here we report that (i) mutant p53 can regulate the expression of the endogenous c-myc gene and is a potent activator of the c-myc promoter; (ii) the region of mutant p53 responsiveness in the c-myc gene has been mapped to the 3′ end of exon 1; (iii) the mutant p53 response region is position and orientation dependent and therefore does not function as an enhancer; and (iv) transactivation by mutant p53 requires the C terminus, which is not essential for wild-type p53 transactivation. These data suggest that it may be possible to selectively inhibit mutant p53 gain of function and consequently reduce the tumorigenic potential of cancer cells. A possible mechanism for transactivation of the c-myc gene by mutant p53 is proposed.  相似文献   

15.
16.
Expression of a p53-associated protein, Mdm-2 (murine double minute-2), can inhibit p53-mediated transactivation. In this study, overexpression of the Mdm-2 protein was found to result in the immortalization of primary rat embryo fibroblasts (REFs) and, in conjunction with an activated ras gene, in the transformation of REFs. The effect of wild-type p53 on the transforming properties of mdm-2 was determined by transfecting REFs with ras, mdm-2, and normal p53 genes. Transfection with ras plus mdm-2 plus wild-type p53 resulted in a 50% reduction in the number of transformed foci (relative to the level for ras plus mdm-2); however, more than half (9 of 17) of the cell lines derived from these foci expressed low levels of a murine p53 protein with the characteristics of a wild-type p53. These results are in contrast to previous studies which demonstrated that even minimal levels of wild-type p53 are not tolerated in cells transformed by ras plus myc, E1A, or mutant p53. The mdm-2 oncogene can overcome the previously demonstrated growth-suppressive properties of p53.  相似文献   

17.
Epithelial plasticity characterizes embryonic development and diseases such as cancer. Epithelial–mesenchymal transition (EMT) is a reversible and guided process of plasticity whereby embryonic or adult epithelia acquire mesenchymal properties. Multiple signaling pathways control EMT, and the transforming growth factor β (TGFβ) pathway plays a central role as its inducer. Here, we analyzed the role of the tumor suppressor protein p53 in TGFβ‐induced EMT in a well‐established mammary epithelial cell model. We found that diploid NMuMG mammary cells bi‐allelically express a wild type and a missense mutant (R277C) form of p53. Global reduction of both forms of p53 led to an enhanced EMT response to TGFβ. Conversely, stabilization of wild type p53 using the compound nutlin had a negative impact on EMT. After silencing both p53 forms, rescue experiments using either wild type or R277C mutant p53 revealed that wild type p53 inhibited, whereas the R277C mutant did not significantly affect, the TGFβ‐driven EMT response. Under serum‐free culture conditions, silencing of total p53 levels led to higher numbers of mammospheres characterized by larger size. Rescue of the silenced endogenous p53 with R277C mutant p53, in contrast, suppressed both size and numbers of the mammospheres. This work proposes that wild type p53 controls the efficiency by which mammary epithelial cells undergo EMT in response to TGFβ. J. Cell. Physiol. 228: 801–813, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
In cells transformed by mutant mouse p53 plus ras, the former protein is found to be complexed with the heat-shock protein cognate hsc70. To determine whether hsc70 can directly affect neoplastic transformation, nonestablished rat embryo fibroblasts (REF) were transfected with rat genomic hsc70 DNA in conjunction with various oncogenes. We report here that the hsc70 gene could efficiently suppress focus induction by mutant p53 plus ras, as well as by myc plus ras. No inhibitory effect of hsc70 was detectable in assays monitoring the ability of REF to be immortalized by mutant p53, arguing against a nonspecific deleterious effect of the hsc70 genomic clone on REF survival and proliferation. Lines generated in the presence of the hsc70 plasmid produced augmented levels of hsc70. Plasmids encoding only short NH2-terminal fragments of hsc70 could also, in some cases, partially reduce oncogene-mediated focus formation. However, a maximal inhibitory effect required the production of a functional hsc70 protein. The data presented here raise the possibility that hsc70 may be directly involved in the modulation of oncogene-mediated transformation.  相似文献   

19.
目的探讨进展期胃癌生长过程中p53基因表达与微血管密度和生物学行为之间的关系。方法搜集有随访资料的胃癌标本107例,用免疫组化对突变型p53和CD34作了标记,用原位杂交对野生型p53作了检测。结果突变型p53在肿瘤不同侵犯深度、不同生长方式、不同淋巴结转移状态以及预后方面,存在显著差异(P<0.05),突变型p53与微血管密度显著相关(P<0.05),而野生型p53则与突变型p53相反。结论突变型和野生型p53在肿瘤生长过程中的表达不同,说明p53的不同功能状态在肿瘤的发展过程中发挥重要作用。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号