首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TYROSINE HYDROXYLASE IN RAT BRAIN: DEVELOPMENTAL CHARACTERISTICS   总被引:17,自引:15,他引:2  
Abstract— The development of tyrosine hydroxylase (tyrosine 3-hydroxylase, EC 1.14.3.a) activity has been examined in whole rat brain and in various regions and subcellular fractions thereof. The specific activity of tyrosine hydroxylase increased almost 15-fold from 15 days of gestation to adulthood. With maturation, those regions of the brain that contain only terminals of the catecholaminergic neurons showed the greatest increases in enzyme activity. There was a shift in the subcellular distribution of tyrosine hydroxylase from the soluble fraction in the fetal brain to the synaptosomal fraction in the adult brain. Tyrosine hydroxylase, dopamine hydroxylase (EC 1.14.2.1) and the specific uptake mechanism for norepinephrine appear to develop in a coordinated fashion.  相似文献   

2.
Tyrosine hydroxylase, a hypoxia-regulated gene, may be involved in tissue adaptation to hypoxia. Intermittent hypoxia, a characteristic feature of sleep apnea, leads to significant memory deficits, as well as to cortex and hippocampal apoptosis that are absent after sustained hypoxia. To examine the hypothesis that sustained and intermittent hypoxia induce different catecholaminergic responses, changes in tyrosine hydroxylase mRNA, protein expression, and activity were compared in various brain regions of male rats exposed for 6 h, 1 day, 3 days, and 7 days to sustained hypoxia (10% O(2)), intermittent hypoxia (alternating room air and 10% O(2)), or normoxia. Tyrosine hydroxylase activity, measured at 7 days, increased in the cortex as follows: sustained > intermittent > normoxia. Furthermore, activity decreased in the brain stem and was unchanged in other brain regions of sustained hypoxia-exposed rats, as well as in all regions from animals exposed to intermittent hypoxia, suggesting stimulus-specific and heterotopic catecholamine regulation. In the cortex, tyrosine hydroxylase mRNA expression was increased, whereas protein expression remained unchanged. In addition, significant differences in the time course of cortical Ser(40) tyrosine hydroxylase phosphorylation were present in the cortex, suggesting that intermittent and sustained hypoxia-induced enzymatic activity differences are related to different phosphorylation patterns. We conclude that long-term hypoxia induces site-specific changes in tyrosine hydroxylase activity and that intermittent hypoxia elicits reduced tyrosine hydroxylase recruitment and phosphorylation compared with sustained hypoxia. Such changes may not only account for differences in enzyme activity but also suggest that, with differential regional brain susceptibility to hypoxia, recruitment of different mechanisms in response to hypoxia will elicit region-specific modulation of catecholamine response.  相似文献   

3.
Catecholamines are known to exert a central influence on the hypothalamo-hypophyseal-adrenal neuroendocrine system. The selective dopaminergic innervation of the hypothalamic paraventricular nucleus (PVN) and putative relationships between dopaminergic fibers and corticotropin releasing hormone (CRH)-synthesizing neurons were studied in the male rat by means of immunocytochemistry following the elimination of noradrenergic and adrenergic inputs to the hypothalamus. A 3.0-mm-wide coronal cut was placed unilaterally in the brain at the rostral level of the mesencephalon. All neuronal structures from the cortex to the ventral surface of the brainstem, including the ascending catecholaminergic fiber bundles were transected. This surgical intervention resulted in the accumulation of dopamine-beta-hydroxylase (DBH)-immunoreactivity in axons proximal to the cut, and an almost complete disappearance of DBH activity in those located distal to the lesion. Two weeks following the operation, DBH immunoreactivity was significantly diminished in the PVN located on the side of lesion, while tyrosine hydroxylase (TH)-immunoreactivity was present in a substantial number of fibers in the same nucleus. Both DBH- and TH-immunoreactive axons were preserved in the contralateral PVN. Simultaneous immunocytochemical localization of either DBH- or TH-IR fibers and corticotropin releasing hormone-synthesizing neurons in the hypothalami from brainstem-lesioned, colchicine treated animals revealed that the distribution of catecholaminergic fibers and CRH neurons is homologous within the PVN of the intact side. Only a few scattered DBH-immunoreactive axons were detected among CRH-producing neurons in the PVN on the side of the lesion. In contrast, many tyrosine hydroxylase containing neurons and neuronal processes were observed on the lesioned side and the TH-IR fibers established juxtapositions with CRH-synthesizing neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The short-term influences of stress on the activities of tyrosine hydroxylase in vivo and in vitro were examined in mice. The in vivo tyrosine hydroxylase activity was estimated by the rate of dopa accumulation which was measured at 30 min after the injection of NSD-1015 (100 mg kg), an aromatic l-amino acid decarboxylase inhibitor, intraperitoneally and was compared with tyrosine hydroxylase activity measured in vitro. For the in vivo assay, both the accumulation of dopa (tyrosine hydroxylase activity) and that of 5-hydroxytryptophan (tryptophan hydroxylase activity) and the levels of monoamines and the metabolites (noradrenalin, adrenalin, dopamine, normetanephrine, 3-methoxytyramine and serotonin) and those of precursor amino acids, tyrosine and tryptophan, were investigated in ten different brain regions and in adrenals. The amount of dopa accumulation in the brain as a consequence of decarboxylase inhibition, in vivo tyrosine hydroxylase activity, was significantly increased by stress, in nerve terminals (striatum, limbic brain, hypothalamus, cerebral cortex and cerebellum) and also in adrenals. The effect of stress on tyrosine hydroxylase activity in vitro at a subsaturating concentration of 6-methyltetrahydropterin cofactor was also observed in nerve terminals (striatum, limbic brain, hypothalamus, and cerebral cortex). The amount of 5-hydroxytryptophan accumulation, the in vivo tryptophan hydroxylase activity, was also significantly increased in bulbus olfactorius, limbic brain, cerebral cortex, septum and lower brain stem. The influence of stress was also observed on the levels of precursor amino acids, tyrosine and tryptophan and monoamines in specific brain parts. These results suggest that the stress influences both catecholaminergic neurons and serotonergic neurons in nerve terminals in the brain. This effect was also observed on tyrosine hydroxylase activity in vitro in nerve terminals. However, in adrenals, the influence by stress was not observed on the in vitro activity, although dopa accumulation was increased.  相似文献   

5.
An immunoblot procedure was developed to quantify the amount of tyrosine hydroxylase protein in homogenate of small brain regions. With the use of this method we have studied the variations in tyrosine hydroxylase activity and protein levels in some catecholaminergic neurons at different times following a single reserpine injection (10 mg/kg s.c.) and reevaluated the anatomical specificity of tyrosine hydroxylase induction by this drug. Reserpine administration provoked a long-lasting increase in both tyrosine hydroxylase activity and protein levels within locus ceruleus neurons. This effect culminated at day 4 after injection. At this time, the enzyme activity and protein levels in treated animals were respectively 2.7 and 2.6 times that measured in vehicle-treated animals. Both parameters varied in parallel so that tyrosine hydroxylase specific activity did not change over time. In contrast, reserpine did not cause any changes in tyrosine hydroxylase activity in the dopaminergic neurons of the substantia nigra, but provoked a moderate increase in tyrosine hydroxylase protein level. This latter effect was maximal (1.5 times) 4 days after treatment. In the adjacent dopaminergic area, i.e., the ventral tegmental area, a small decrease in the enzyme activity was recorded at day 2 without any significant change in the level of the protein. In conclusion, first, our data show the capacity of our method to assay tyrosine hydroxylase protein amounts in small brain catecholaminergic nuclei. Second, our results confirm and extend previous studies on the effect of reserpine on the regulation of tyrosine hydroxylase level within brain noradrenergic neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The activities of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) were measured in vitro in the brown adipose tissue (BAT) of control and hypothyroid developing rats. Neonatal hypothyroidism slows the development of TH activity, as manifest in lower BAT TH activity, relative to controls, up to 20 days. This effect is more pronounced when the onset of hypothyroidism is induced prenatally. No clear effect of hypothyroidism on DBH activity was evident.  相似文献   

7.
Previous studies from our laboratory showed that subchronic exposure to low levels of Pb resulted in significant decrease in dopamine (DA) content, attenuation of stimulus-induced release of DA in the dopaminergic projection area of nucleus accumbens (NA), and alterations in tyrosine hydroxylase (TH) activity in rat whole brain homogenates. The present study reported here was conducted to assess the functional integrity of DA synthesis in different brain regions of rats subchronically (90-days) exposed to 50 ppm Pb by measuring the activity of the rate limiting enzyme, tyrosine hydroxylase, in seven brain regions. In Pb-exposed rats, TH activity was reduced in two of the seven brain regions investigated, i.e., nucleus accumbens (42% reduction) and frontal cortex (61% reduction) when compared to controls. In contrast, Pb exposure did not affect the TH activity in cerebellum, brainstem, hippocampus, hypothalamus and striatum. The changes in TH activity in nucleus accumbens (NA) and frontal cortex (FC) in Pb-exposed rats were further confirmed by Western blot analysis using TH polyclonal antibody. Collectively, these results indicate that low level subchronic Pb exposure may affect TH protein in these brain regions.  相似文献   

8.
—The regional distributions of monamine oxidase (MAO) (EC 1.4.3.4), catechol-O-methyltransferase (COMT) (EC 2.1.1.6), tyrosine hydroxylase (TH) (EC 1.14.3.2), and dopamine-β-hydroxylase (DBH) (EC 1.14.2.1) have been examined in human brains obtained at autopsy from persons who died of natural causes (controls), and from persons who committed suicide and were further categorized as suffering from affective disorder (depression) or from alcoholism. Post mortem animal studies showed no changes in MAO or COMT activities in rabbit brain or in DBH activity in rat brain when the intact bodies were left at room temperature up to 24 h. TH activity in rabbit brains, however, began to decline immediately after death and after 24 h at room temperature it was approximately 48 per cent of the fresh brain level. There was no significant variation in activity of COMT, TH and DBH in human brain attributable to age or sex. MAO activities in the 60–70 yr decade were 34 per cent higher than in the 30–40 yr decade. MAO activities were highest in the hypothalamus and substantia nigra, TH activities were highest in substantia nigra, putamen and head of caudate, and DBH activities were greatest in tegmentum of pons and hypothalamus. Only minimal regional differences in COMT activities were observed. No significant differences were found between enzyme activities in brain areas of controls and suicides with the possible exception of TH in the substantia nigra, where the depressive suicides (but not the alcoholics) showed greater activity (P < 0·02). These findings appear not to support the catecholamine hypothesis of affective disorder.  相似文献   

9.
Chronic nicotine (0.8 mg/kg by daily subcutaneous injection) over a 7 to 28-day period was found to increase the activity of tyrosine hydroxylase in predominantly noradrenergically innervated regions but not in dopaminergic projection areas. Increases in tyrosine hydroxylase activity were observed in dopaminergic cell body regions only after nicotine treatment for 3 to 5 days. The increase in tyrosine hydroxylase activity in noradrenergic neurones was evident first in the cell bodies in the locus coeruleus from 3 to 7 days, reaching 223% of control activities, and was followed by increases of up to 205% in the terminals up to 3 weeks later. It was then established that nicotine for 7 days was sufficient to increase the activity of the enzyme to the same extent in the terminals at 21 days even without further nicotine administration. This is consistent with axonal transport preceded by induction of the enzyme in noradrenergic cell bodies, whereas "delayed activation" might account for the transient effect seen in dopaminergic cell body regions. The response in the locus coeruleus to nicotine for 7 days was completely blocked by daily preinjection with mecamylamine but not with hexamethonium, which is consistent with the effect of nicotine on tyrosine hydroxylase being mediated by central nicotinic receptors.  相似文献   

10.
Summary Catecholamines are known to exert a central influence on the hypothalamo-hypophyseal-adrenal neuroendocrine system. The selective dopaminergic innervation of the hypothalamic paraventricular nucleus (PVN) and putative relationships between dopaminergic fibers and corticotropin releasing hormone (CRH)-synthesizing neurons were studied in the male rat by means of immunocytochemistry following the elimination of noradrenergic and adrenergic inputs to the hypothalamus. A 3.0-mm-wide coronal cut was placed unilaterally in the brain at the rostral level of the mesencephalon. All neuronal structures from the cortex to the ventral surface of the brainstem, including the ascending catecholaminergic fiber bundles were transected. This surgical intervention resulted in the accumulation of dopamine--hydroxylase (DBH)-immunoreactivity in axons proximal to the cut, and an almost complete disappearance of DBH activity in those located distal to the lesion. Two weeks following the operation, DBH immunoreactivity was significantly diminished in the PVN located on the side of lesion, while tyrosine hydroxylase (TH)-immunoreactivity was present in a substantial number of fibers in the same nucleus. Both DBH- and TH-immunoreactive axons were preserved in the contralateral PVN. Simultaneous immunocytochemical localization of either DBH- or TH-IR fibers and corticotropin releasing hormone-synthesizing neurons in the hypothalami from brainstem-lesioned, colchicine treated animals revealed that the distribution of catecholaminergic fibers and CRH neurons is homologous within the PVN of the intact side. Only a few scattered DBH-immunoreactive axons were detected among CRH-producing neurons in the PVN on the side of the lesion. In contrast, many tyrosine hydroxylase containing neurons and neuronal processes were observed on the lesioned side and the TH-IR fibers established juxtapositions with CRH-synthesizing neurons.These morphological data demonstrate that following the surgical ablation of noradrenergic and adrenergic afferents to the PVN, a substantial number of tyrosine hydroxylase-IR fibers remained in the nucleus and they were associated with corticotropin releasing hormone synthesizing neurons. Therefore, it is hypothesized that the paraventricular nucleus receives a selective dopaminergic innervation and these dopaminergic axons might influence the function of the pituitary and adrenal glands via the hypothalamic CRH system.Supported by grants from the National Science Foundation (NSF INT 8703030), the Hungarian Academy of Sciences (OTKA 104), the National Institutes of Health (NS 19266) and the National Foundation of Technical Development (OKKFT Tt 286/1986)  相似文献   

11.
H J Choi  S Y Park  O Hwang 《Peptides》1999,20(7):817-822
Roles of protein kinase A (PKA) and protein kinase C (PKC) in regulation of tyrosine hydroxylase, dopamine beta-hydroxylase, and phenylethanolamine N-methyltransferase expression by pituitary adenylate cyclase-activating polypeptide (PACAP) were determined in primary cultured bovine chromaffin cells. DBH up-regulation by PACAP was reduced by H-89 and not further increased by forskolin showing involvement of cAMP/PKA. It was not mediated by PKC, as 12-O-tetradecanoylphorbol-13-acetate and sphingosine exerted no effect. Tyrosine hydroxylase induction by PACAP was mediated by both kinases. The PACAP-activated PKA up-regulated phenylethanolamine N-methyltransferase expression whereas PKC caused down-regulation. PACAP increased tyrosine hydroxylase and dopamine beta-hydroxylase activities, but slightly lowered phenylethanolamine N-methyltransferase activity, resulting in a preferential rise in norepinephrine over epinephrine.  相似文献   

12.
Dopamine beta-hydroxylase (DBH) catalyzes the final step in the biosynthesis of norepinephrine, the principal classic neurotransmitter of peripheral sympathetic neurons. We have shown that 5.8 kb of 5' upstream region from a cloned human DBH gene promoter is sufficient to direct expression of the E. coli lacZ gene in transgenic mice to neurons of the locus ceruleus and other classic noradrenergic brain stem nuclei, sympathetic ganglion neurons, and adrenal chromaffin cells. lacZ expression was also observed in neurons of the enteric system, the retina, some sensory and all cranial parasympathetic ganglia, and some diencephalic and telencephalic brain nuclei. The expression pattern of the transgene in DBH-immunonegative sites overlapped with many sites where expression of tyrosine hydroxylase or phenylethanolamine N-methyltransferase, two other catecholamine biosynthetic enzymes, has been reported.  相似文献   

13.
Elevated Tyrosine Hydroxylase in the Locus Coeruleus of Suicide Victims   总被引:7,自引:4,他引:3  
Abstract: The amounts of tyrosine hydroxylase protein in locus coeruleus from nine pairs of antidepressant-free suicide victims and age-matched, sudden-death control cases were determined by quantitative blot immunolabeling of cryostat-cut sections from the caudal portion of the nucleus. In each of the nine age-matched pairs, the concentration of tyrosine hydroxylase was greater in the sample from the suicide victim, with values ranging from 108 to 172% of the matched control value (\-x = 136%). By contrast, there were no differences in the concentrations of neuron-specific enolase protein in the same set of samples. Similarly, the number of neuromelanin-containing cells, counted in sections of locus coeruleus adjacent to those taken for blot immunolabeling analyses, did not differ between the two groups. These data indicate that locus coeruleus neurons from suicide victims contain higher than normal concentrations of tyrosine hydroxylase, thus raising the possibility that the expression of tyrosine hydroxylase in locus coeruleus may be relevant in the pathophysiology of suicide.  相似文献   

14.
Abstract: Inhibition of tyrosine hydroxylase from five regions of rat brain by a model catecholamine, DOPA and a model catecholestrogen, 2-hydroxyestradiol, was examined. Tyrosine hydroxylase preparations from amygdala, preoptic, hypothalamic, striatal and hippocampal regions were freed of small molecules by gel filtration before use. The feedback inhibition of tyrosine hydroxylase by the two model catechols was studied using a spectrum of reduced pterin cofactors, including tetrahydrobiopterin, 6-methyl-tetrahydropterin and 6, 7-dimethyltetrahydropterin. Micromolar levels of either inhibitor produced marked inhibition of tyrosine hydroxylase from all regions when subsaturating levels of the endogenous cofactor, tetrahydrobiopterin, were used.  相似文献   

15.
Tyrosine hydroxylase activity correlated significantly with norepinephrine concentration and turnover, when results from regions containing predominantly noradrenergic terminals were compared, and with dopamine concentration and turnover when results from regions containing predominantly dopaminergic terminals were compared. Regions containing dopamine or norepinephrine cell bodies were characterized by higher tyrosine hydroxylase activities as compared to regions containing mostly nerve terminals. Higher levels of tyrosine hydroxylase activity and transmitter turnover were observed in regions containing dopaminergic terminals than in regions containing norepinephrine terminals. These findings are consistent with the view that tyrosine hydroxylase activity is linked to rates of catecholamine utilization by neurons in the CNS.  相似文献   

16.
The monoamine-synthesizing enzymes tyrosine hydroxylase (TH), dopamine-beta-hydroxylase (DBH) and tryptophan hydroxylase (TrH) were immunocytochemical localized in dopaminergic, noradrenergic and serotonergic neurons of rat brain by light and electron microscopy. In dopaminergic and serotonergic neurons, the respective synthesizing enzymes. TH and TrH, were distributed throughout the cytoplasm of the neuronal perikarya, dendrites, axons and terminals. The most selective accumulation of reaction product for the specific enzyme was associated: (a) in perikarya with endoplasmic reticulum, Golgi apparatus and microtubules, (b) in processes with microtubules, and (c) in terminals with dense granules or clear vesicles. The labeled terminals were characterized by their content of labeled organelles and the absence of synaptic junctions. In noradrenergic neurons, both TH and DBH were localized in the perikarya, similar to TH in dopamine neurons. TH and DBH differed in their localization within proximal axons and dendrites in that TH was associated with microtubules but DBH was not. These results provide ultrastructural evidence to suggest that monoamines may be: (a) synthesized by enzymes which are associated with different organelles depending on the portion of the neuron and the type of enzyme; (b) synthesized in both axons and dendrites and (c) released from terminals without postsynaptic membrane specializations.  相似文献   

17.
DOPAMINE-β-HYDROXYLASE IN THE RAT BRAIN: DEVELOPMENTAL CHARACTERISTICS   总被引:12,自引:7,他引:5  
Abstract— A sensitive and specific assay for dopamine-8-hydroxylase (DBH) in the rat brain has been developed. The enzyme in the brain has requirements for cofactors and affinity for substrate similar to DBH in the adrenal medulla. DBH activity was demonstrable in the brain of the fetal rat at 15 days of gestation; there was an increase in DBH activity with maturation that preceded and paralleled the rise in levels of endogenous norepinephrine until 3 weeks after birth. There was a shift in the distribution of total DBH activity from the caudal to the rostral regions of the brain during development. In the adult brain, DBH was highly localized in the nerve terminals. Between 17 days of gestation and adult-hood, there was 2300-fold increase in the DBH activity that sedimented with sheared-off nerve terminals.  相似文献   

18.
W S Schwark  R R Keesey 《Life sciences》1976,19(11):1699-1704
The effect of neonatal hypothyroidism on tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) activity, as well as on water content, was studied in different regions of the developing rat brain. Neonatal hypothyroidism, induced by daily treatment with propylthiouracil starting at birth, led to a cretinoid syndrome with a marked impairment of body and brain growth. Compared to control littermates, 30- and 45-day-old cretinous rats had elevated levels of water in the brain stem. The activities of TH and TPH were increased in a time-dependent manner in the brain stem, basal ganglia and hypothalamus of maturing cretinous animals. The increased activity of these rate-limiting enzymes of mono-amine synthesis may account for the elevated levels of brain norepi-nephrine and serotonin in rats subjected to neonatal hypothyroidism.  相似文献   

19.
Immature rats were made copper deficient by feeding them a low (< 1 p. p. m.) copper diet. During the gestation and lactation periods their dams consumed the same diet. Controls received a dietary supplement of 10 p. p. m. copper. At approx 7 weeks of age, the deficient animals exhibited signs of neurological dysfunction and gross lesions of the brain. Cytochrome oxidase activity and copper content of the liver and brain were used as criteria of copper status and confirmed the existence of severe deficiency. The whole brains minus cerebella of the deficient animals contained approx 30% less dopamine and norepinephrine than those of the controls. The tyrosine hydroxylase activity was depressed more than 25% in the copper deficient brains while the superoxide dismutase activity was lowered more than 35%. There was a high correlation between the chief criterion of copper status, liver cytochrome oxidase activity, and the brain concentrations of dopamine, norepinephrine and tyrosine hydroxylase activity. The decrease in activity of tyrosine hydroxylase was sufficient to account for the lowered concentrations of the catecholamines.  相似文献   

20.
A full length dopamine-beta-hydroxylase (DBH) cDNA clone was isolated from a human pheochromocytoma lambda gt11 library. Both structural and functional evidence confirms the authenticity of the clone: (i) antibodies selected with fusion proteins generated by positive clones precipitate DBH activity, (ii) the sequence of three internal DBH tryptic peptides are included in the deduced DBH sequence, (iii) the previously reported N-terminal 15 amino acids of bovine DBH exhibits a nearly complete identity with that predicted for human DBH. The polypeptide chain of DBH comprises 578 amino acids corresponding to an unmodified protein of 64 862 daltons and is preceded by a cleaved signal peptide of 25 residues. DBH exists in both membrane-bound and soluble forms. The hydropathy plot reveals no obvious hydrophobic segment, except the signal peptide. S1 mapping analysis indicates no diversity in the 5' and 3' extremities of the DBH mRNA. Taken together with available biochemical data, these observations suggest that the membrane attachment of DBH probably results from a post-translational modification, glypiation being the most likely candidate. Comparative amino acid sequence analysis establishes that DBH shares no homology with the other catecholamine synthesizing enzymes, tyrosine hydroxylase and phenylethanolamine-N-methyl transferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号