首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In order to clarify the induction of alcohol dehydrogenase (ADH) by anaerobiosis in oat (Avena sativa L.), the seedlings were exposed to anaerobiosis and activity of ADH and ADH isozyme profiles were determined. The anaerobiosis increased ADH activities in shoots and roots of the seedlings. By day 2, the activity increased 5 and 4 times in the roots and the shoots, respectively, compared with those under aerobic condition. Based on nondenaturing electrophoresis, ADH isozyme composition analysis revealed six bands consisting of a dimmer enzyme with submits encoded by three different Adh genes. Changes in staining intensity of the isozymes indicated that the increase in ADH activity in oat under anaerobiosis resulted from increased enzyme synthesis.  相似文献   

2.
In barley (Hordeum vulgare L.), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH) are induced by anaerobiosis in both aleurone layers and roots. Under aerobic conditions, developing seeds of cv Himalaya accumulate ADH activity, which survives seed drying and rehydration. This activity consists almost entirely of the ADH1 homodimer. Activity of LDH also increases during seed development, but the level of activity in dry or rehydrated seeds is very low, indicating that this enzyme may not be involved in anaerobic glycolysis during the initial stages of germination. In contrast to ADH, the LDH isozymes present in developing seeds are similar to those found in uninduced and induced roots. Developmental expression of ADH and LDH was monitored from 0 to 24 days postgermination. Neither activity was induced to any extent in the germinating seeds; however, both enzymes were highly induced by anoxia in root tissue during development. Based on gel electrophoresis, this increase in activity results from the differential expression of different Adh and Ldh genes in root tissue. The changes in ADH and LDH activity levels were matched by changes in the amount of these particular proteins, indicating that the increase in activity results from de novo synthesis of these two proteins. The level of inducible LDH activity in an ADH1 mutant was not found to differ from cv Himalaya. We suggest that although the ADH plants are more susceptible to flooding, they are not capable of responding to the lack of ADH1 activity by increasing the amount of LDH activity in root tissue.  相似文献   

3.
The expression and anaerobic induction of alcohol dehydrogenase in cotton   总被引:1,自引:0,他引:1  
The alcohol dehydrogenase (ADH) system in cotton is characterized, with an emphasis on the cultivated allotetraploid speciesGossypium hirsutum cv. Siokra. A high level of ADH activity is present in seed of Siokra but quickly declines during germination. When exposed to anaerobic stress the level of ADH activity can be induced several fold in both roots and shoots of seedlings. Unlike maize andArabidopsis, ADH activity can be anaerobically induced in mature green leaves. Three major ADH isozymes were resolved in Siokra, and it is proposed that two genes,Adh1 andAdh2, are coding for these three isozymes. The genes are differentially expressed. ADH1 is predominant in seed and aerobically grown roots, while ADH2 is prominent in roots only after anaerobic stress. Biochemical analysis demonstrated that the ADH enzyme has a native molecular weight of approximately 81 kD and a subunit molecular weight of approximately 42 kD, thus establishing that ADH in cotton is able to form and is active as dimers. Comparisons of ADH activity levels and isozyme patterns between Siokra and other allotetraploid cottons showed that the ADH system is highly conserved among these varieties. In contrast, the diploid species of cotton all had unique isozyme patterns.This work was generously supported by an Australian Cotton Research Council Postgraduate Studentship.  相似文献   

4.
The responses of two aquatic plants, arrowhead (Sagittaria pygmaea Miq.) and pondweed (Potamogeton distinctus A. Benn), to anoxia were compared with those of rice (Oryza sativa L.). Shoot elongation of arrowhead tubers was enhanced at around 1 kPa O2, whereas that of pondweed turions was slight in air and reached a maximum in the absence of O2. Anaerobic enhancement of alcohol dehydrogenase (ADH) activity took place in rice coleoptiles but not in arrowhead and pondweed shoots. Shoots of both arrowhead and pondweed maintained a more stable energy status than did the rice coleoptile under anaerobic conditions. Total adenylate nucleotide contents of arrowhead and pondweed shoots were constant under anaerobic conditions. Adenylate energy charge in both shoots remained at a high and stable level of more than 0·8 for at least 8 d. Three forms of ADH from arrowhead shoots were separated by starch gel electrophoresis, showing that the activity of each ADH form was different under aerobic and anaerobic conditions. The incorporation of 35S-labelled Cys and Met into soluble proteins in arrowhead shoots showed active protein biosynthesis and an involvement of a special set of polypeptides in the anaerobiosis.  相似文献   

5.
6.
ADH, α-GPDH and SOD enzyme activities have been measured in lines of Drosophila melanogaster homozygous and/or heterozygous for chromosomes extracted from two different populatioi Globally the results demonstrate that factors other than structural genes are determining the observed pattern of enzyme activities. ADH and α-GPDH activities are, however, more affected than SOD by these factors. Geographic origin, sex, chromosome, genetic background of the lines, containing regulatory genes in a broad sense, can be mentioned as the more relevant factors that influencing enzyme activities. A high and significant correlation is detected between ADH and α-GPDH enzyme activities and it can be interpreted as due to linkage disequilibrium among these two loci. SOD activity shows a lesser correlation with ADH and α-GPDH because it is less variable within population, i.e. it is a more canalized character. Finally, a principal component analysis, using the three enzyme systems shows that both populations are clearly separated, with a first principal component explaining 71.1 percent of the observed variance.  相似文献   

7.
8.
The proteins of soybean roots undergoing anaerobiosis can be grouped into three classes. Class 1 proteins are induced severalfold and at least 28 of these were identified by in vivo labeling. These proteins include the enzymes alcohol dehydrogenase (ADH), fructose aldolase, pyruvate decarboxylase, phosphoglucomutase, and lactate dehydrogenase. Class 2 proteins include such enzymes as glucose phosphate isomerase, sucrase, and malate dehydrogenase; their specific activity remains constant in aerobiosis or anaerobiosis. The third class of proteins includes those enzymes such as peroxidase whose activity decreases more than 90% after just 1 day in anaerobiosis. Immunoblotting coupled with two-dimensional chromatography of in vitro translated plant extracts demonstrated that ADH level during anaerobiosis is controlled by its mRNA concentration. Little or no mRNA for ADH was detected in aerobically grown roots. This suggests that the increased level of ADH activity is due to de novo synthesis of the mRNA rather than activation of a sequestered mRNA or superactivation of the protein.  相似文献   

9.
Expression of alcohol dehydrogenase in rice embryos under anoxia   总被引:2,自引:0,他引:2  
Summary Alcohol dehydrogenase (ADH) activity was present in roots and shoots of 48-h rice embryos and rose in response to anoxia. The increase was accompanied by changes in the ADH isozyme pattern. Translatable levels of mRNA for two ADH peptides increases as early as 1 h after the beginning of anoxic treatment. Adh mRNA was detected in aerobically grown rice embryos by hybridization to maize Adh1 cDNA: its level increased significantly after 3 h of anoxia.  相似文献   

10.
Summary Alcohol dehydrogenase (ADH) activity is expressed in Arabidopsis seeds and tissue cultures. During the germination process, ADH activity declines rapidly and is no longer detectable in 9- to 10-day-old seedlings. The synthesis of ADH could be demonstrated in seedlings submitted to anaerobiosis by 35S-methionine incorporation studies.Callus, induced from seeds or leaves on a 2,4-dichlorophenoxyacetic acid (2,4-D)-containing medium, and cell suspension cultures are characterized by a high level of ADH activity. The incorporation of 35S-methionine and two-dimensional electrophoresis indicated that ADH induction was due to de novo synthesis of the polypeptides. In vitro translation of total poly (A)+-RNA from seedlings and callus showed that only callus mRNA was able to direct the synthesis of ADH polypeptides. This demonstrates the de novo synthesis of ADH mRNA during callus induction.Northern blot hybridization, using in vitro labelled ADH1-F DNA from maize as a probe, revealed sequence homology at the mRNA level between Arabidopsis and maize.Dedicated to professor Georg Melchers to celebrate his 50-year association with the journal  相似文献   

11.
The role of proteolytic enzymes in protein degradation of detached and intact leaves of rice seedling ( Oryza sativa L. cv. Taiching Native 1) during senescence and of mature leaves during reproductive development was investigated. The amount of soluble protein decreased by about 50% in 2, 4, and 15 days for detached, intact and mature leaves, respectively. Three proteolytic enzyme activities were monitored with pH optima of 4.5 for hemoglobin-digesting proteinase, 5.5 for carboxypeptidase and 8.0 for aminopeptidase. No azocoll-digesting proteinase activity could be detected in rice leaves. Dialysis did not alter the activities of any of the three proteolytic enzymes. Acid proteinase activity and aminopeptidase activity were highly unstable during storage of the enzyme extracts at 4°C. Proteolysis was stimulated by inclusion of meroaptoethanal either in the extraction medium or the assay medium.
Acid proteinase, carboxypeptidase and aminopeptidase were all present in detached, intact and mature leaves throughout senescence. There seems to be a direct correlation between protein degradation and increases of acid proteinase and carboxypeptidase activity in seedling leaves (detached and intact) during senescence. In senescing (detached and intact) leaves of seedlings the acid proteinase activity developed first, while that of carboxypeptidase developed later. Acid proteinase and carboxypeptidase may play major roles in protein degradation of leaves from seedlings during senscence. During reproductive development, protein degradation was associated with decreases in the activities of acid proteinase, carboxypeptidase and aminopeptidase in mature leaves suggesting that the enzymes were less important for protein degradation in this system. Hence, the role of protelytic enzymes in protein degradation during senescence of rice leaves appears to depend largely on the leaf system used.  相似文献   

12.
Ascorbic acid (AsA), as a unique antioxidant and enzyme cofactor, has multiple roles in plants. However, there is very limited information on the mechanism of AsA accumulation and controlling in leaves. In this study, we determined AsA accumulation levels, analyzed expression patterns of the genes involved in synthesizing via l-galactose pathway and recycling as well as enzyme activities in apple (Malus domestica Borkh) leaves with different age. AsA content was found to increase with leaf development, reaching the highest level in 20-day-old leaves. This level was maintained in mature leaves until the dropping in senescent leaves. Comparing with young and senescent leaves, mature leaves had higher capability for AsA synthesis with high expression levels and activity of l-galactose dehydrogenase and l-galactono-1,4-lactone dehydrogenase. The mRNA expression of genes involved in AsA synthesis also showed highest abundance in 20-day-old leaves, though GDP-mannose-3′,5′-epimerase and l-galactose-1-phosphate phosphatase expression reached the highest levels before 20 days old. These results suggest that AsA accumulation in apple leaves mainly occurs during the transition phase from young to mature leaves with high rates of synthesis and recycling, and that l-galactose-1-phosphate phosphatase could play an important role in regulating AsA biosynthesis via the l-galactose pathway.  相似文献   

13.
《Aquatic Botany》1987,28(2):129-141
In Najas marina L., total alcohol dehydrogenase (ADH) activity is very high in seeds. The pattern is very complex. In mature tissue, the activity is much lower and only one zone of activity is detected. From molecular weight comparisons, densitometric scans and dissociation-reassociation experiments, we could conclude that the major ADH system is controlled by two genes, Adh 1 and Adh 2. The gene product shows interactions and forms homodimers, heterodimers and intergenic heterodimers. Some polymorphism was found within populations of N. marina subsp. marina. In N. marina subsp. intermedia (Gorski) Casper, many different types of zymograms could be detected. Three additional allelic forms were found for Adh 1 and two for Adh 2. In pollen, an additional system is induced which forms heterodimers with Adh 1 and is probably under the control of a third gene, Adh 3. The enzymes are nicotinamide-adenine dinucleotide (NAD) specific and oxidise a wide variety of primary alcohols, with preference for short chain lengths.  相似文献   

14.
Abstract Aerobically germinated seedlings of rice and Echinochloa were found to survive when placed in an anaerobic environment for 4 d, whereas pea and maize seedlings did not. Although root and shoot growth were inhibited in rice and Echinochloa under anaerobiosis, growth resumed when the seedlings were returned to aerobic conditions. Alcohol dehydrogenase (ADH) activity increased more, and protein synthesis was greater, in the shoots than in the roots under anaerobic conditions. These results suggest that, in anaerobiosis-tolerant species, ADH activity and protein synthesis in the shoots represents or results from metabolic adaptations to low oxygen. These results are discussed in terms of plant establishment and growth in a low-oxygen environment.  相似文献   

15.
The effect of anaerobiosis of wheat seedling roots during 6 consecutive days on contents of ethanol, lactate and glucose in roots and shoots and on the exudation of ethanol from roots to the medium was examined. Activities of alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH) were determined. After 36 h of anaerobiosis the concentration of ethanol in roots increased temporarily about 6 times and after 6 days it decreased to the level of control plants. The exudation of ethanol from roots to the medium showed similar pattern. The content of lactate was unaffected by anaerobiosis. In contrast, the content of glucose in roots of seedlings increased already after 1 day of anaerobiosis about 2 times and this higher level of glucose was noticed during consecutive 5 days. Anaerobiosis of roots caused an increase in the activity of ADH in both roots and shoots but the increase was not related to the content of ethanol in tissues, or exudated to the medium. The activity of LDH was unaffected by this factor. The results are discussed in relation to the limitation of energy supply of plants grown under root anaerobiosis.  相似文献   

16.
Summary Alcohol dehydrogenase isozyme proteins were characterized by visualization on two dimensional polyacrylamide gels. Native first dimension electrophoresis separates isozymes by size and charge, while preserving enzyme activity and subunit interactions. SDS electrophoresis in the second dimension breaks subunit interactions and separates polypeptides primarily by molecular weight. Results revealed that ADH2 monomers are larger in molecular weight than ADH1 monomers. An EMS induced Adhl mutant was found to produce ADH1 monomers of reduced molecular weight. Autoradiography revealed that only a few proteins (five or six) including ADH1 and ADH2 actively incorporate labelled amino acids after prolonged anaerobiosis.  相似文献   

17.
Alcohol dehydrogenase (ADH, EC 1. 1. 1. 1), lactate dehydrogenase (LDH, EC 1. 1. 1. 27) and alanine aminotransferase (AlaAT, EC 2. 6. 1. 2) activity in wild rice ( Zizania palustris L.) root tissue increased after 4 days of exposure to hypoxic stress. The activities of ADH and AlaAT also increased in leaf tissue under these same conditions, whereas LDH activity did not. Isozyme banding patterns indicate that wild rice has at least two functional Adh genes, only one of which is hypoxically induced in root and leaf tissue. The isozyme profile of LDH also indicates the presence of two functional Ldh genes in wild rice. Two bands of AlaAT activity are visible on native electrophoretic gels of root and leaf tissue. Neither of these bands appears to increase in activity in hypoxic samples, even though spectrophotometric assays indicate an increase in AlaAT activity. Ethanol accumulation was the highest of all the metabolites measured. Alanine and malate also accumulated under hypoxic conditions but only to about one-fifth the level of ethanol. Succinate, aspartate and lactate showed no observable changes throughout the induction period. These results show that wild rice differs from domesticated rice ( Oryza sativa L.) in its metabolic responses to anaerobic stress. The possible role of these responses in conferring flood tolerance is discussed.  相似文献   

18.
19.
Ethylene-induced abscission in leaf and fruit explants of peach involves different enzymes. In leaves abscission is accompanied by increased occurrence of cellulase forms differing in isoelectric point (pI 6.5 and 9.5). A polypeptide with a molecular mass of 51 kDa gives in a western blot a strong cross-reaction with an antibody raised against a maturation cellulase from avocado fruit. Cellulase activity is also found in abscising fruit explants but the amount is very low compared to that of the leaf explants. A northern analysis with a cellulase clone from avocado reveals the presence of two hybridizing mRNAs with a size of 2.2 kb and 1.8 kb, respectively. The steady-state level of the 2.2 kb mRNA is significantly increased by treatment with ethylene.Polygalacturonases are not detected in abscising leaves, but are strongly induced by ethylene in fruit explants. Of the three forms found, two are exopolygalacturonases while the third is an endoenzyme. Ethylene activates preferentially the endoenzyme and the basic exoenzyme but depresses the acid exopolygalacturonases. A northern analysis carried out with a cDNA coding for tomato endopolygalacturonase shows hybridization only with one endopolygalacturonase mRNA from in the fruit abscission zone. Treatment with ethylene causes an increase in the steady-state level of this mRNA. The differences in the enzyme patterns observed in fruit and leaf abscission zones and a differential enzyme induction suggest the feasibility to regulate fruit abscission in peach with the aid of antisense RNA genes.  相似文献   

20.
Alcohol dehydrogenase and an inactivator from rice seedlings   总被引:6,自引:4,他引:2       下载免费PDF全文
Alcohol dehydrogenase (ADH) was measured in the various organs of rice seedlings (Oryza sativa) growing in air. In extracts from ungerminated seeds, the ADH is stable, but in extracts from seedlings more than 2 days old the enzyme initially present loses activity in a time- and temperature-dependent fashion, due to the presence of an inactivating component which increases with age in roots and shoots. The inactivation can be prevented completely by dithiothreitol, and when this is included in the extraction medium the apparent loss of total ADH in roots and shoots with age is not observed. In seedlings grown in N2, ADH levels in coleoptile extracts are higher than those in air, the enzyme is stable, and no inactivator can be detected. When seedlings grown for 5 days in air were transferred to N2 for 3 days, ADH levels increased and there was a decline in inactivator activity. Transfer back to air after 1 day in N2 led to loss of the accumulated ADH and increase in inactivator. These reciprocal changes and the fact that the inactivator is absent from coleoptiles of seedlings grown in N2 appear to suggest a regulatory role for the inactivator in vivo. However, it is clear that high levels of inactivator and ADH can exist in cells of seedlings grown in air for long periods without loss of enzyme activity, and it is argued that they must normally be separately compartmented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号