首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Molecular membrane biology》2013,30(3-4):339-365
In rat small intestine, the active transport of organic solutes results in significant depolarization of the membrane potential measured in an epithelial cell with respect to a grounded mucosal solution and in an increase in the transepithelial potential difference. According to the analysis with an equivalent circuit model for the epithelium, the changes in emf's of mucosal and serosal membranes induced by active solute transport were calculated using the measured conductive parameters. The result indicates that the mucosal cell membrane depolarizes while the serosal cell membrane remarkably hyperpolarizes on the active solute transport. Corresponding results are derived from the calculations of emf's in a variety of intestines, using the data that have hitherto been reported. The hyperpolarization of serosal membrane induced by the active solute transport might be ascribed to activation of the serosal electrogenic sodium pump. In an attempt to determine the causative factors in mucosal membrane depolarization during active solute transport, cell water contents and ion concentrations were measured. The cell water content remarkably increased and, at the same time, intracellular monovalent ion concentrations significantly decreased with glucose transport. Net gain of glucose within the cell was estimated from the restraint of osmotic balance between intracellular and extracellular fluids. In contrast to the apparent decreases in intracellular Na+ and K+ concentrations, significant gains of Na+ and K+ occurred with glucose transport. The quantitative relationships among net gains of Na+, K+ and glucose during active glucose transport suggest that the coupling ratio between glucose and Na+ entry by the carrier mechanism on the mucosal membrane is approximately 1:1 and the coupling ratio between Na+-efflux and K+-influx of the serosal electrogenic sodium pump is approximately 4:3 in rat small intestine. In addition to the electrogenic ternary complex inflow across the mucosal cell membrane, the decreases in intracellular monovalent ion concentrations, the temporary formation of an osmotic pressure gradient across the cell membrane and the streaming potential induced by water inflow through negatively charged pores of the cell membrane in the course of an active solute transport in intestinal epithelial cells are apparently all possible causes of mucosal membrane depolarization.  相似文献   

2.
In the epithelium of rat distal colon the acetylcholine analogue carbachol induces a transient increase of short-circuit current (Isc) via stimulation of cellular K+ conductances. Inhibition of the turnover of inositol-1,4,5-trisphosphate (IP3) by LiCl significantly reduced both the amplitude and the duration of this response. When the apical membrane was permeabilized with nystatin, LiCl nearly abolished the carbachol-induced activation of basolateral K+ conductances. In contrast, in epithelia, in which the basolateral membrane was bypassed by a basolateral depolarization, carbachol induced a biphasic increase in the K+ current across the apical membrane consisting of an early component carried by charybdotoxin- and tetraethylammonium-sensitive K+ channels followed by a sustained plateau carried by channels insensitive against these blockers. Only the latter was sensitive against LiCl or inhibition of protein kinases. In contrast, the stimulation of the early apical K+ conductance by carbachol proved to be resistant against inhibition of phospholipase C or protein kinases. However, apical dichlorobenzamil, an inhibitor of Na+/Ca2+ exchangers, or a Ca2+-free mucosal buffer solution significantly reduced the early component of the carbachol-induced apical K+ current. The presence of an apically localized Na+/Ca2+-exchanger was proven immunohistochemically. Taken together these experiments reveal divergent regulatory mechanisms for the stimulation of apical Ca2+-dependent K+ channels in this secretory epithelium, part of them being activated by an inflow of Ca2+ across the apical membrane.
G. SchultheissEmail:
  相似文献   

3.
Summary Models of epithelial salt secretion, involving secondary active transport of Cl [9], locate the K+ conductance of the plasma membrane exclusively in the basolateral membrane, although there is considerable experimental evidence to show that many secretory epithelia do have a significant apical K+ conductance. We have used an equivalent circuit model to examine the effect of an apical K+ conductance on the composition and flow rate of the fluid secreted by an epithelium in which secretion is driven by the secondary active transport of Cl. The parameters of the model were chosen to be similar to those measured in the dog tracheal mucosa when stimulated with adrenaline to secrete. We find that placing a K+ conductance in the apical membrane can actually enhance secretion provided that proportion of the total cell K+ conductance in the apical membrane is not greater than about 60%, the enabling effect on secretion being maximal when the proportion is around 10–20%. We also find that even when the entire cell K+ conductance is located in the apical membrane, the secreted fluid remains relatively Na+ rich. Analysis of the sensitivity of model behavior to the choice of values for the parameters shows that the effects of an apical K+ conductance are enhanced by increasing the ratio of the paracellular resistance to the transcellular resistance.  相似文献   

4.
Free-flow electrophoresis was used to separate microvilli from the lateral basal plasma membrane of the epithelial cells from rat small intestine. The activities of the marker enzyme for the microvillus membrane, i.e. alkaline phosphatase (EC 3.1.31), was clearly separated from the marker for the lateral-basal plasma membrane, i.e. the (Na+, K+)-ATPase (EC 3.6.1.3). A microvillus membrane fraction was obtained with a high specific activity of alkaline phosphatase (an 8-fold enrichement over the starting homogenate). The lateral-basal plasma membrane fraction contained (Na+, K+)-ATPase (5-fold over homogenate) with some alkaline phosphatase (2-fold over homogenate).Glucose transport was studied in both membrane fractions. The uptake of d-glucose was much faster than that of l-glucose in either plasma membrane, d-Glucose uptake could be accounted for completely by its transport into an osmotically active space. Interestingly, the characteristics of the glucose transport of the microvillus membrane were different from those of the lateral-basal plasma membrane. In particular: Na+ stimulated the d-glucose transport by the microvillus membrane, but not by the lateral-basal plasma membrane. In addition, the glucose transport of the microvillus membrane was much more sensitive to phlorizin inhibition than that of the lateral-basal plasma membrane.These experiments thus provide evidence not only for an asymmetrical distribution of the enzymes, but also for differences in the transport properties with respect to glucose between the two types of plasma membrane of the intestinal epithelial cell.  相似文献   

5.
The very existence of higher metazoans depends on the vectorial transport of substances across epithelia. A crucial element of this transport is the membrane enzyme Na+,K+-ATPase. Not only is this enzyme distributed in a polarized manner in a restricted domain of the plasma membrane but also it creates the ionic gradients that drive the net movement of glucose, amino acids, and ions across the entire epithelium. In a previous work, we have shown that Na+,K+-ATPase polarity depends on interactions between the β subunits of Na+,K+-ATPases located on neighboring cells and that these interactions anchor the entire enzyme at the borders of the intercellular space. In the present study, we used fluorescence resonance energy transfer and coprecipitation methods to demonstrate that these β subunits have sufficient proximity and affinity to permit a direct interaction, without requiring any additional extracellular molecules to span the distance.  相似文献   

6.
Summary Active Cl transport in bullfrog corneal epithelium was studied using transepithelial impendance analysis methods, and direct-current (DC) measurements of membrane voltages and resistance ratios. The technique allows the estimation of the apical and basolateral membrane conductances, and the paracellular conductance, and does not rely on the use of membrane conductance-altering agents to obtain these measurements as was requisite in earlier DC equivalent-circuit analysis studies. In addition, the analysis results in estimates of the apical and basolateral membrane capacitances, and allows resolution of the paracellular conductance into properties of the tight junctions and lateral spaces. Membrane capacitances (proportional to areas) were used to estimate the specific conductances of the apical and basolateral membranes, as well as to evaluate coupling between the cell layers. We confirm results obtained from earlier studies: (1) apical membrane conductance is proportional to the rate of active Cl transport and is, highly Cl selective; (2) intracellular Cl activity is above electrochemical equilibrium, thereby providing a net driving force for apical membrane Cl exit; (3) the paracellular conductance is comparable to the transcellular conductance. We also found that: (1) the paracellular conductance is composed of the series combination of the junctional conductance and a nonnegligible lateral space resistance; (2) a small K+ conductance reported in the apical membrane may result from Cl channels possessing a finite permeability to K+; (3) the basolateral membrane areas is 36 times greater than the apical membrane area which is consistent with the notion of electrical coupling between the five to six cell layers of the epithelium; (4) the specific conductance of the basolateral membrane is many times lower than that of the apical membrane; (5) the net transport of Cl is modulated primarily by changes in the conductance of the apical membrane and not by changes in the net electrochemical gradient resulting from opposite changes in the electrical and chemical gradients; (6) the conductance of the basolateral membrane does not change with transport which implies that the net driving force for K+ exit increases with transport, possibly due to an increase in the intracellular K+ activity.  相似文献   

7.
Summary In the mammalian distal colon, the surface epithelium is responsible for electrolyte absorption, while the crypts are the site of secretion. This study examines the properties of electrical potential-driven86Rb+ fluxes through K+ channels in basolateral membrane vesicles of surface and crypt cells of the rabbit distal colon epithelium. We show that Ba2+-sensitive, Ca2+-activated K+ channels are present in both surface and crypt cell derived vesicles with half-maximal activation at 5×10–7 m free Ca2+. This suggests an important role of cytoplasmic Ca2+ in the regulation of the bidirectional ion fluxes in the colon epithelium.The properties of K+ channels in the surface cell membrane fraction differ from those of the channels in the crypt cell derived membranes. The peptide toxin apamin inhibits Ca2+-activated K+ channels exclusively in surface cell vesicles, while charybdotoxin inhibits predominantely in the crypt cell membrane fraction. Titrations with H+ and tetraethylammonium show that both high-and low-sensitive86Rb+ flux components are present in surface cell vesicles, while the high-sensitive component is absent in the crypt cell membrane fraction. The Ba2+-sensitive, Ca2+-activated K+ channels can be solubilized in CHAPS and reconstituted into phospholipid vesicles. This is an essential step for further characterization of channel properties and for identification of the channel proteins in purification procedures.  相似文献   

8.
The effect of monovalent cations on derepression of phosphate transport was studied. It was found that ammonium, K+ and Rb+ accelerate the derepression of phosphate transport produced by glucose in yeast (Saccharomyces cerevisiae). Na+ and Li+ were ineffective in accelerating derepression; Cs+ produced only a minor stimulation. The concentration range of both K+ and NH4+ that accelerated derepression was similar to that required for transport to occur. In the case of ammonium, the effects seem to depend exclusively on the so-called low-affinity transport system. The effect was strongly dependent on pH, with an optimum around 6; however, the increase in the pH of the medium did not produce in itself a high increase of the depression. Derepression was dependent on the presence of glucose, and it was very low with ethanol as substrate. The mechanism seems to depend on the ability that both K+ and NH4+ have to decrease the membrane potential of the cell while transported, and not on the capacity to produce the alkalinization of the cell interior. In addition, the phenomenon depends on the presence of glucose as substrate, which indicates the involvement of some product of glucose metabolism in the mechanism, and possibly some relation to catabolic repression.  相似文献   

9.

Key message

The molecular mechanism of potassium ion transport across membranes in conifers is poorly known. We isolated and analyzed a gene encoding a potassium transporter from the conifer Cryptomeria japonica.

Abstract

Potassium ion (K+) is an essential and the most abundant intracellular cation in plants. The roles of K+ in various aspects of plant life are closely linked to its transport across biological membranes such as the plasma membrane and the tonoplast, which is mediated by membrane-bound transport proteins known as transporters and channels. Information on the molecular basis of K+ membrane transport in trees, especially in conifers, is currently limited. In this study, we isolated one complementary DNA, CjKUP1, which is homologous to known plant K+ transporters, from Cryptomeria japonica. Complementation tests using an Escherichia coli mutant, which is deficient in K+ uptake activity, was conducted to examine the K+ uptake function of the protein encoded by CjKUP1. Transformation of the K+-uptake-deficient mutant with CjKUP1 complemented the deficiency of this mutant. This result indicates that CjKUP1 has a function of K+ uptake. The expression levels of CjKUP1 in male strobili were markedly higher from late September to early October than in other periods. The expression levels in male and female strobili were higher than those in other organs such as needles, inner bark, differentiating xylem, and roots. These results indicate that CjKUP1 is mainly involved in K+ membrane transport in the cells of reproductive organs of C. japonica trees, especially in male strobili during pollen differentiation.  相似文献   

10.
11.
12.
Matrix swelling induces a rapid, transient, energy-independent potassium efflux in rat liver mitochondria. Swelling-induced K+-loss is electroneutral; therefore it does not reflect electrophoretic diffusion secondary to increased membrane permeability. Matrix swelling unmasks an endogenous KH transport mechanism in the mitochondrial membrane, providing a valuable experimental approach to the study of K+ transport in mitochondria.  相似文献   

13.
Summary The evolution of the volume, the Na+ and K+ contents and the glycerol and ATP contents were investigated after subjectingDunaliella tertiolecta cells to hypertonic shocks. It was found that the variations in the glycerol and the ion contents superimpose as the cell regulates its volume. Hypertonic shock induces a rapid increase (some minutes) in the Na+ influx and Na+ content followed by a decrease until a new steady value is reached after 30 min of cell transfer. The regulatory mechanism extruding Na+ out of the cells was dependent on the presence of K or Rb ions in the external medium. A transient pumping of K+ ions was found after subjecting the cells to a hypertonic shock. This increase in K+ content resulted from the transient increase in the K+ influxes. The K+ pumping mechanism was blocked by the absence of Ca++ and Mg++ ions in the external medium and was inhibited by DCCD, FCCP and DCMU, whereas ouabain, cyanide and PCMBS were ineffective. The increase in K+ content was observed if the hypertonic shock was induced by the addition of NaCl, glycerol or choline chloride. These results are interpreted on the basis of two distinct mechanisms: a Na/K exchange pump and a Na+ independent K+ pump. These ionic transfer mechanisms would participate in the osmoregulation ofDunaliella cells and would be of importance, particularly during the onset of the osmotic shock when glycerol synthesis is incomplete.  相似文献   

14.
The ectoderm of the one-day chick embryo generates dorsoventrally oriented short-circuit current (I sc) entirely dependent on extracellular sodium.At the dorsal cell membrane, the I sc was modified reversibly and in a concentration-dependent manner by: amiloride (60% decrease at 1 mm, with 2 apparent IC50s: 0.13 and 48 m), phlorizin (0.1 mm) or removal of glucose (30% decrease, additive to that of amiloride), SITS (1 mm, 13% decrease). Acidification or alkalinization of the dorsal (but not ventral) superfusate produced, respectively, decrease or increase of I sc with a pH50 of 7.64.Ba2+ (0.1–1 mm) from either side of the ectoderm decreased the I sc by 30%. Anthracene-9-carboxylic acid, furosemide and inducers of cAMP had no effect on electrophysiological properties of the blastoderm.The chick ectoderm is therefore a highly polarized epithelium containing, at the dorsal membrane, the high and low affinity amiloride-sensitive Na+ channels, Na+-glucose cotransporter, K+ channels and pH sensitivity, and, at the ventral membrane, the Na+, K+-ATPase and K+ channels. The Na+ transport reacts to pH, but lacks the cAMP regulatory system, well known in many epithelia.The active Na+ transport drives glucose and fluid into the intraembryonic space, across and around the blastoderm which, in the absence of blood circulation, could secure renewal of extracellular fluid and disposal of wastes and thus maintain the cell homeostasis.This work was supported by the Swiss National Research Foundation (grant 3.418-0.86 to P.K.), by the Roche Research Foundation (grant to U.K.), the Fond du 450ème anniversaire de l'Université de Lausanne and the Société Académique Vaudoise (grants to H.A.). We thank C. Bareyre, G. de Torrenté and R. Ksontini for excellent technical assistance and Drs. E. Raddatz, Y. de Ribaupierre and B. Prod'hom for helpful discussions.  相似文献   

15.
The Cl? transport properties of the luminal border of bovine tracheal epithelium have been investigated using a highly purified preparation of apical plasma membrane vesicles. Transport of Cl? into an intravesicular space was demonstrated by (1) a linear inverse correlation between Cl? uptake and medium osmolarity and (2) complete release of accumulated Cl? by treatment with detergent. The rate of Cl? uptake was highly temperature-sensitive and was enhanced by exchange diffusion, providing evidence for a carrier-mediated transport mechanism. Transport of Cl? was not affected by the ‘loop’ diuretic bumetanide or by the stilbene-derivative anion-exchange inhibitors SITS (4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid) and DIDS (4,4′-diisothiocyanostilbene-2,2′-disulfonic acid). In the presence of the impermeant cation, tetramethylammonium (TMA+), uptake of Cl? was minimal; transport was stimulated equally by the substitution of either K+ or Na+ for TMA+. Valinomycin in the presence of K+ enhanced further Cl? uptake, while amiloride reduced Na+-stimulated Cl? uptake towards the minimal level observed with TMA+. These results suggest the following conclusions: (1) the tracheal vesicle membrane has a finite permeability to both Na+ and K+; (2) the membrane permeability to the medium counterion determines the rate of Cl? uptake; (3) Cl? transport is not specifically coupled with either Na+ or K+; and, finally (4) Cl? crosses the tracheal luminal membrane via an electrogenic transport mechanism.  相似文献   

16.
Whereas cation transport by the electrogenic membrane transporter Na+,K+-ATPase can be measured by electrophysiology, the electroneutrally operating gastric H+,K+-ATPase is more difficult to investigate. Many transport assays utilize radioisotopes to achieve a sufficient signal-to-noise ratio, however, the necessary security measures impose severe restrictions regarding human exposure or assay design. Furthermore, ion transport across cell membranes is critically influenced by the membrane potential, which is not straightforwardly controlled in cell culture or in proteoliposome preparations. Here, we make use of the outstanding sensitivity of atomic absorption spectrophotometry (AAS) towards trace amounts of chemical elements to measure Rb+ or Li+ transport by Na+,K+- or gastric H+,K+-ATPase in single cells. Using Xenopus oocytes as expression system, we determine the amount of Rb+ (Li+) transported into the cells by measuring samples of single-oocyte homogenates in an AAS device equipped with a transversely heated graphite atomizer (THGA) furnace, which is loaded from an autosampler. Since the background of unspecific Rb+ uptake into control oocytes or during application of ATPase-specific inhibitors is very small, it is possible to implement complex kinetic assay schemes involving a large number of experimental conditions simultaneously, or to compare the transport capacity and kinetics of site-specifically mutated transporters with high precision. Furthermore, since cation uptake is determined on single cells, the flux experiments can be carried out in combination with two-electrode voltage-clamping (TEVC) to achieve accurate control of the membrane potential and current. This allowed e.g. to quantitatively determine the 3Na+/2K+ transport stoichiometry of the Na+,K+-ATPase and enabled for the first time to investigate the voltage dependence of cation transport by the electroneutrally operating gastric H+,K+-ATPase. In principle, the assay is not limited to K+-transporting membrane proteins, but it may work equally well to address the activity of heavy or transition metal transporters, or uptake of chemical elements by endocytotic processes.  相似文献   

17.
The electrophysiology of root cells of the marine halophyte, Salicornia bigelovii Torr., has been investigated. Cellular concentrations of K+, Cl, and Na+ and resulting cell membrane potentials were determined as functions of time and exposure to dilutions of artificial seawater. Treatment of these data by the Nernst criterion suggests that Cl is actively transported into these root cells, but that active transport need not be invoked to explain the accumulation of Na+ at all salinities investigated nor for K+ at moderate to high salinities. In low environmental salinity, the cell electropotential of Salicornia root cells was found to respond to inhibitors in a fashion similar to that observed in glycophytes; in high environmental salinity, root cell membrane potential appears to be insensitive to bathing salinity and m-chlorocarbonylcyanide phenylhydrazone induces membrane hyperpolarization, in contrast to the response of glycophytes to such treatments. The fact that measured membrane potentials exceed diffusion potentials for Na+, K+, and Cl and the observation of a rapid depolarization by CO in the dark suggests an electrogenic component in Salicornia root cell membrane potentials.  相似文献   

18.
19.
Karin Nowikovsky  Paolo Bernardi 《BBA》2009,1787(5):345-350
Regulation of mitochondrial volume is a key issue in cellular pathophysiology. Mitochondrial volume and shape changes can occur following regulated fission-fusion events, which are modulated by a complex network of cytosolic and mitochondrial proteins; and through regulation of ion transport across the inner membrane. In this review we will cover mitochondrial volume homeostasis that depends on (i) monovalent cation transport across the inner membrane, a regulated process that couples electrophoretic K+ influx on K+ channels to K+ extrusion through the K+-H+ exchanger; (ii) the permeability transition, a loss of inner membrane permeability that may be instrumental in triggering cell death. Specific emphasis will be placed on molecular advances on the nature of the transport protein(s) involved, and/or on diseases that depend on mitochondrial volume dysregulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号