首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Integral equation models for endemic infectious diseases   总被引:6,自引:0,他引:6  
Summary Endemic infectious diseases for which infection confers permanent immunity are described by a system of nonlinear Volterra integral equations of convolution type. These constant-parameter models include vital dynamics (births and deaths), immunization and distributed infectious period. The models are shown to be well posed, the threshold criteria are determined and the asymptotic behavior is analysed. It is concluded that distributed delays do not change the thresholds and the asymptotic behaviors of the models.This work was partially supported by NIH Grant AI 13233.  相似文献   

2.
In this paper we will discuss different modeling approaches for the spread of prion diseases in the brain. Firstly, we will compare reaction-diffusion models with models of epidemic diseases on networks. The solutions of the resulting reaction-diffusion equations exhibit traveling wave behavior on a one-dimensional domain, and the wave speed can be estimated. The models can be tested for diffusion-driven (Turing) instability, which could present a possible mechanism for the formation of plaques. We also show that the reaction-diffusion systems are capable of reproducing experimental data on prion spread in the mouse visual system. Secondly, we study classical epidemic models on networks, and use these models to study the influence of the network topology on the disease progression.  相似文献   

3.
Spatial ecoepidemic models, in which diseases affect interacting populations, are often explored through reaction-diffusion equations. However, cellular automata (CA) are a widely recognized tool for modelling spatial pattern formation that are broadly analagous to reaction diffusion equations, but provide greater flexibility in defining population dynamics. In this work we present a CA defined to mimic the prey–predators interactions while a pathogen is affecting, in turn, one population. We explore system equilibria, given different initial conditions and local interaction neighborhoods. Furthermore, in the various ecoepidemic systems considered we report the formation of waves and spirals: a key summary of how diseases may spread among individuals. Some inferences on the predators and infection eradication strategies are presented and supported by simulations results.  相似文献   

4.
BACKGROUND AND PURPOSE: Degenerative diseases of the central nervous system are a heterogenous group of slowly progressive disorders. A common feature of this group, which includes Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, is gradual loss of specific populations of neurons. METHODS: A series of reports about neurodegenerative diseases and their relevant animal models, as well as a brief overview of the normal neuron and mechanisms of neuronal degeneration and death, is presented. CONCLUSION: Study of the aforementioned animal models, spontaneously occurring and experimentally induced, have provided important insights into the pathogenesis of these disorders and the development of effective therapeutic strategies.  相似文献   

5.
The literature dealing with mathematical modelling for diabetes is abundant. During the last decades, a variety of models have been devoted to different aspects of diabetes, including glucose and insulin dynamics, management and complications prevention, cost and cost-effectiveness of strategies and epidemiology of diabetes in general. Several reviews are published regularly on mathematical models used for specific aspects of diabetes. In the present paper we propose a global overview of mathematical models dealing with many aspects of diabetes and using various tools. The review includes, side by side, models which are simple and/or comprehensive; deterministic and/or stochastic; continuous and/or discrete; using ordinary differential equations, partial differential equations, optimal control theory, integral equations, matrix analysis and computer algorithms.  相似文献   

6.
In most biological studies and processes, cell proliferation and population dynamics play an essential role. Due to this ubiquity, a multitude of mathematical models has been developed to describe these processes. While the simplest models only consider the size of the overall populations, others take division numbers and labeling of the cells into account. In this work, we present a modeling and computational framework for proliferating cell populations undergoing symmetric cell division, which incorporates both the discrete division number and continuous label dynamics. Thus, it allows for the consideration of division number-dependent parameters as well as the direct comparison of the model prediction with labeling experiments, e.g., performed with Carboxyfluorescein succinimidyl ester (CFSE), and can be shown to be a generalization of most existing models used to describe these data. We prove that under mild assumptions the resulting system of coupled partial differential equations (PDEs) can be decomposed into a system of ordinary differential equations (ODEs) and a set of decoupled PDEs, which drastically reduces the computational effort for simulating the model. Furthermore, the PDEs are solved analytically and the ODE system is truncated, which allows for the prediction of the label distribution of complex systems using a low-dimensional system of ODEs. In addition to modeling the label dynamics, we link the label-induced fluorescence to the measure fluorescence which includes autofluorescence. Furthermore, we provide an analytical approximation for the resulting numerically challenging convolution integral. This is illustrated by modeling and simulating a proliferating population with division number-dependent proliferation rate.  相似文献   

7.
N Becker 《Biometrics》1979,35(1):295-305
This paper is concerned with models formulated to describe the spread of infectious diseases through a community. Some standard epidemic models are introduced and an overview of their uses is provided. The paper includes a discussion of the advantages of simple models over complex ones and the advantages of stochastic models over deterministic ones. The role that epidemic models can play in helping us to understand the spread of diseases and to plan control policies for diseases is explained. The paper also contains a review of some major insights gained from a study of epidemic models and from statistical analyses of disease data using epidemic models. Some explicit suggestions for future research projects are made.  相似文献   

8.
Bivariate cumulative damage models are proposed where the responses given the damages are independent random variables. The bivariate damage process can be either bivariate Poisson or bivariate gamma. A bivariate continuous cumulative damage model is investigated in which the responses given the damages have gamma distributions. In this case evaluation of the joint density function and bivariate tail probability function is facilitated by expanding the gamma distributions of the conditional responses by Laguerre polynomials. This approach also leads to evaluation of associated survival models. Moments and estimating equations are discussed. In addition, a bivariate discrete cumulative damage model is investigated in which the responses given the damages have a distribution chosen from a class that includes the negative binomial, the Neyman Type‐A, the Polya‐Aeppli, and the Lagrangian Poisson. Probabilities are obtained from recursive formulas which do not involve cancellation error as all quantities are non‐negative. Moments and estimating equations are presented for these models also. The continuous and the discrete models are applied to describe the rise of systolic and diastolic blood pressure with age.  相似文献   

9.
Despite temporally forced transmission driving many infectious diseases, analytical insight into its role when combined with stochastic disease processes and non-linear transmission has received little attention. During disease outbreaks, however, the absence of saturation effects early on in well-mixed populations mean that epidemic models may be linearised and we can calculate outbreak properties, including the effects of temporal forcing on fade-out, disease emergence and system dynamics, via analysis of the associated master equations. The approach is illustrated for the unforced and forced SIR and SEIR epidemic models. We demonstrate that in unforced models, initial conditions (and any uncertainty therein) play a stronger role in driving outbreak properties than the basic reproduction number R0, while the same properties are highly sensitive to small amplitude temporal forcing, particularly when R0 is small. Although illustrated for the SIR and SEIR models, the master equation framework may be applied to more realistic models, although analytical intractability scales rapidly with increasing system dimensionality. One application of these methods is obtaining a better understanding of the rate at which vector-borne and waterborne infectious diseases invade new regions given variability in environmental drivers, a particularly important question when addressing potential shifts in the global distribution and intensity of infectious diseases under climate change.  相似文献   

10.
We derive appropriate mathematical models to assess the effectiveness of culling as a tool to eradicate vector-borne diseases. The model, focused on the culling strategies determined by the stages during the development of the vector, becomes either a system of autonomous delay differential equations with impulses (in the case where the adult vector is subject to culling) or a system of nonautonomous delay differential equations where the time-varying coefficients are determined by the culling times and rates (in the case where only the immature vector is subject to culling). Sufficient conditions are derived to ensure eradication of the disease, and simulations are provided to compare the effectiveness of larvicides and insecticide sprays for the control of West Nile virus. We show that eradication of vector-borne diseases is possible by culling the vector at either the immature or the mature phase, even though the size of the vector is oscillating and above a certain level.   相似文献   

11.
Recent increases in reported outbreaks of tick-borne diseases have led to increased interest in understanding and controlling epidemics involving these transmission vectors. Mathematical disease models typically assume constant population size and spatial homogeneity. For tick-borne diseases, these assumptions are not always valid. The disease model presented here incorporates non-constant population sizes and spatial heterogeneity utilizing a system of differential equations that may be applied to a variety of spatial patches. We present analytical results for the one patch version and find parameter restrictions under which the populations and infected densities reach equilibrium. We then numerically explore disease dynamics when parameters are allowed to vary spatially and temporally and consider the effectiveness of various tick-control strategies.  相似文献   

12.
Previous neuronal models used for the study of neural networks are considered. Equations are developed for a model which includes: 1) a normalized range of firing rates with decreased sensitivity at large excitatory or large inhibitory input levels, 2) a single rate constant for the increase in firing rate following step changes in the input, 3) one or more rate constants, as required to fit experimental data for the adaptation of firing rates to maintained inputs. Computed responses compare well with the types of neuronal responses observed experimentally. Depending on the parameters, overdamped increases and decreases, damped oscillatory or maintained oscillatory changes in firing rate are observed to step changes in the input. The integrodifferential equations describing the neuronal models can be represented by a set of first-order differential equations. Steady-state solutions for these equations can be obtained for constant inputs, as well as the stability of the solutions to small perturbations. The linear frequency response function is derived for sufficiently small time-varying inputs. The linear responses are also compared with the computed solutions for larger non-linear responses.  相似文献   

13.
Phototransduction is a process which links the absorption of photons by a rod or cone to the modulation of voltage across the cell membrane. An important feature of many vertebrate photoreceptors is a mechanism that adjusts the sensitivity and dynamics of the response to light according to the level of illumination. We construct a system of ordinary differential equations that models what are currently thought to be the important molecule mechanisms involved in phototransduction: this includes consideration of both intracellular enzyme kinetics and the properties of light-insensitive and light-sensitive conductances in the cone membrane. The system contains negative feedback whose functional form is determined by constraining the steady-state behaviour of the system. Despite the highly nonlinear nature of the system of ordinary differential equations, our methods permit us to derive an analytic expression for the first-order frequency response parametric in the steady-state value of only one dynamic variable, the light input. Various unknown kinetic parameters are found by fitting the model to experimental data on the first-order frequency response of cones measured at several mean light levels spanning a range of four log units. Good fits are obtained to the data, and the computed shape of the feedback function agrees qualitatively with recent experiment. Moreover, the model accounts for the dramatic speeding up of the response kinetics and the decrease in response gain with increasing light level.  相似文献   

14.
An SI epidemic model for a host with two viral infections circulating within the population is developed, analyzed, and numerically simulated. The model is a system of four differential equations which includes a state for susceptible individuals, two states for individuals infected with a single virus, one which is vertically transmitted and the other which is horizontally transmitted, and a fourth state for individuals infected with both viruses. A general growth function with density-dependent mortality is assumed. A special case of this model, where there is no coinfection and total cross immunity, is thoroughly analyzed. Several threshold values are defined which determine establishment of the disease and persistence at equilibrium for one or both of the infections within the host population. The model has applications to a hantavirus and an arenavirus that infect cotton rats. The hantavirus is transmitted horizontally whereas the arenavirus is transmitted vertically. It is shown through analysis and numerical simulations that both diseases can be maintained within a single host population, where individuals can be either infected with both viruses or with a single virus.  相似文献   

15.
Recently, a class of two-dimensional integrate and fire models has been used to faithfully model spiking neurons. This class includes the Izhikevich model, the adaptive exponential integrate and fire model, and the quartic integrate and fire model. The bifurcation types for the individual neurons have been thoroughly analyzed by Touboul (SIAM J Appl Math 68(4):1045–1079, 2008). However, when the models are coupled together to form networks, the networks can display bifurcations that an uncoupled oscillator cannot. For example, the networks can transition from firing with a constant rate to burst firing. This paper introduces a technique to reduce a full network of this class of neurons to a mean field model, in the form of a system of switching ordinary differential equations. The reduction uses population density methods and a quasi-steady state approximation to arrive at the mean field system. Reduced models are derived for networks with different topologies and different model neurons with biologically derived parameters. The mean field equations are able to qualitatively and quantitatively describe the bifurcations that the full networks display. Extensions and higher order approximations are discussed.  相似文献   

16.
Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations.  相似文献   

17.
Understanding mouse models of disease through metabolomics   总被引:1,自引:0,他引:1  
Metabolomics is widely applicable to a number of fields including toxicology, plant metabolism and functional genomics. In the area of functional genomics, a number of studies have demonstrated the potential of this approach, which combines high-throughput metabolite profiling with computer-assisted pattern recognition approaches. In this review, recent applications of metabolomics to understanding mouse models of disease are considered. This includes studies on the impact of mouse strain on disease models, as well as metabolic profiling of cardiovascular, metabolic and neurodegenerative diseases. This versatile tool is set to increase in popularity as functional genomic approaches produce more mouse models for phenotyping.  相似文献   

18.
Recently, research that focuses on the rigorous understanding of the relation between simulation and/or exact models on graphs and approximate counterparts has gained lots of momentum. This includes revisiting the performance of classic pairwise models with closures at the level of pairs and/or triples as well as effective-degree-type models and those based on the probability generating function formalism. In this paper, for a fully connected graph and the simple SIS (susceptible-infected-susceptible) epidemic model, a novel closure is introduced. This is done via using the equations for the moments of the distribution describing the number of infecteds at all times combined with the empirical observations that this is well described/approximated by a binomial distribution with time dependent parameters. This assumption allows us to express higher order moments in terms of lower order ones and this leads to a new closure. The significant feature of the new closure is that the difference of the exact system, given by the Kolmogorov equations, from the solution of the newly defined approximate system is of order 1/N(2). This is in contrast with the O(1/N) difference corresponding to the approximate system obtained via the classic triple closure. The fully connected nature of the graph also allows us to interpret pairwise equations in terms of the moments and thus treat closures and the two approximate models within the same framework. Finally, the applicability and limitations of the new methodology is discussed in detail.  相似文献   

19.
Mathematical models of transmission have become invaluable management tools in planning for the control of emerging infectious diseases. A key variable in such models is the reproductive number R. For new emerging infectious diseases, the value of the reproductive number can only be inferred indirectly from the observed exponential epidemic growth rate r. Such inference is ambiguous as several different equations exist that relate the reproductive number to the growth rate, and it is unclear which of these equations might apply to a new infection. Here, we show that these different equations differ only with respect to their assumed shape of the generation interval distribution. Therefore, the shape of the generation interval distribution determines which equation is appropriate for inferring the reproductive number from the observed growth rate. We show that by assuming all generation intervals to be equal to the mean, we obtain an upper bound to the range of possible values that the reproductive number may attain for a given growth rate. Furthermore, we show that by taking the generation interval distribution equal to the observed distribution, it is possible to obtain an empirical estimate of the reproductive number.  相似文献   

20.

Background  

Computational biology is often associated with genetic or genomic studies only. However, thanks to the increase of computational resources, computational models are appreciated as useful tools in many other scientific fields. Such modeling systems are particularly relevant for the study of complex systems, like the epidemiology of emerging infectious diseases. So far, mathematical models remain the main tool for the epidemiological and ecological analysis of infectious diseases, with SIR models could be seen as an implicit standard in epidemiology. Unfortunately, these models are based on differential equations and, therefore, can become very rapidly unmanageable due to the too many parameters which need to be taken into consideration. For instance, in the case of zoonotic and vector-borne diseases in wildlife many different potential host species could be involved in the life-cycle of disease transmission, and SIR models might not be the most suitable tool to truly capture the overall disease circulation within that environment. This limitation underlines the necessity to develop a standard spatial model that can cope with the transmission of disease in realistic ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号