首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stage-structured epidemic models provide a way to connect the interacting processes of infection and demography. Reproduction and development can replenish the pool of susceptible hosts, and demographic structure leads to heterogeneous transmission and disease risk. Epidemics, in turn, can increase mortality or reduce fertility of the host population. Here we present a framework that integrates both demography and epidemiology in models for stage-structured epidemics. We use the vec-permutation matrix approach to classify individuals jointly by their demographic stage and infection status. We describe demographic and epidemic processes as alternating in time with a periodic matrix model. The application of matrix calculus to this framework allows for the calculation of R0{\mathcal{R}_0} and sensitivity analysis.  相似文献   

2.
This paper is devoted to the presentation and study of a specific stochastic epidemic model accounting for the effect of contact-tracing on the spread of an infectious disease. Precisely, one considers here the situation in which individuals identified as infected by the public health detection system may contribute to detecting other infectious individuals by providing information related to persons with whom they have had possibly infectious contacts. The control strategy, which consists of examining each individual who has been able to be identified on the basis of the information collected within a certain time period, is expected to efficiently reinforce the standard random-screening-based detection and considerably ease the epidemic. In the novel modelling of the spread of a communicable infectious disease considered here, the population of interest evolves through demographic, infection and detection processes, in a way that its temporal evolution is described by a stochastic Markov process, of which the component accounting for the contact-tracing feature is assumed to be valued in a space of point measures. For adequate scalings of the demographic, infection and detection rates, it is shown to converge to the weak deterministic solution of a PDE system, as a parameter n, interpreted as the population size, roughly speaking, becomes larger. From the perspective of the analysis of infectious disease data, this approximation result may serve as a key tool for exploring the asymptotic properties of standard inference methods such as maximum likelihood estimation. We state preliminary statistical results in this context. Eventually, relations of the model with the available data of the HIV epidemic in Cuba, in which country a contact-tracing detection system has been set up since 1986, is investigated and numerical applications are carried out.  相似文献   

3.
This paper models the impact of urbanization on infectious disease transmission by integrating a CA land use development model, population projection matrix model and CA epidemic model in S-Plus. The innovative feature of this model lies in both its explicit treatment of spatial land use development, demographic changes, infectious disease transmission and their combination in a dynamic, stochastic model. Heuristically-defined transition rules in cellular automata (CA) were used to capture the processes of both land use development with urban sprawl and infectious disease transmission. A population surface model and dwelling distribution surface were used to bridge the gap between urbanization and infectious disease transmission. A case study is presented involving modelling influenza transmission in Southampton, a dynamically evolving city in the UK. The simulation results for Southampton over a 30-year period show that the pattern of the average number of infection cases per day can depend on land use and demographic changes. The modelling framework presents a useful tool that may be of use in planning applications.  相似文献   

4.
This paper is devoted to the presentation and study of a specific stochastic epidemic model accounting for the effect of contact-tracing on the spread of an infectious disease. Precisely, one considers here the situation in which individuals identified as infected by the public health detection system may contribute to detecting other infectious individuals by providing information related to persons with whom they have had possibly infectious contacts. The control strategy, which consists of examining each individual who has been able to be identified on the basis of the information collected within a certain time period, is expected to efficiently reinforce the standard random-screening-based detection and considerably ease the epidemic. In the novel modelling of the spread of a communicable infectious disease considered here, the population of interest evolves through demographic, infection and detection processes, in a way that its temporal evolution is described by a stochastic Markov process, of which the component accounting for the contact-tracing feature is assumed to be valued in a space of point measures. For adequate scalings of the demographic, infection and detection rates, it is shown to converge to the weak deterministic solution of a PDE system, as a parameter n, interpreted as the population size, roughly speaking, becomes larger. From the perspective of the analysis of infectious disease data, this approximation result may serve as a key tool for exploring the asymptotic properties of standard inference methods such as maximum likelihood estimation. We state preliminary statistical results in this context. Eventually, relations of the model with the available data of the HIV epidemic in Cuba, in which country a contact-tracing detection system has been set up since 1986, is investigated and numerical applications are carried out.  相似文献   

5.
This paper examines simple age-structured models of childhood disease epidemiology, focusing on nonstationary populations which characterize LDCs. An age-structured model of childhood disease epidemiology for nonstationary populations is formulated which incorporates explicit scaling assumptions with respect both to time and to population density. The static equilibrium properties and the dynamic local stability of the model are analyzed, as are the effects of random variability due to fluctuations in demographic structure. We determine the consequences of population growth rate for: the critical level of immunization needed to eradicate an endemic disease, the transient epidemic period, the return time which measures the stability of departures from epidemiological equilibrium, and the power spectrum of epidemiological fluctuations and combined demographic-epidemiological fluctuations. Growing populations are found to be significantly different from stationary ones in each of these characteristics. The policy implications of these findings are discussed.  相似文献   

6.
Thresholds in transmission are responsible for critical changes in infectious disease epidemiology. The epidemic threshold indicates whether infection invades a totally susceptible population. The reinfection threshold indicates whether self-sustained transmission occurs in a population that has developed a degree of partial immunity to the pathogen (by previous infection or vaccination). In models that combine susceptible and partially immune individuals, the reinfection threshold is technically not a bifurcation of equilibria as correctly pointed out by Breban and Blower. However, we show that a branch of equilibria to a reinfection submodel bifurcates from the disease-free equilibrium as transmission crosses this threshold. Consequently, the full model indicates that levels of infection increase by two orders of magnitude and the effect of mass vaccination becomes negligible as transmission increases across the reinfection threshold.  相似文献   

7.
The Kermack-McKendrick epidemic model revisited   总被引:1,自引:0,他引:1  
The Kermack-McKendrick epidemic model of 1927 is an age of infection model, that is, a model in which the infectivity of an individual depends on the time since the individual became infective. A special case, which is formulated as a two-dimensional system of ordinary differential ordinary differential equations, has often been called the Kermack-McKendrick model. One of the products of the SARS epidemic of 2002-2003 was a variety of epidemic models including general contact rates, quarantine, and isolation. These models can be viewed as age of infection epidemic models and analyzed using the approach of the full Kermack-McKendrick model. All these models share the basic properties that there is a threshold between disappearance of the disease and an epidemic outbreak, and that an epidemic will die out without infecting the entire population.  相似文献   

8.
Endemic disease in host populations with fully specified demography   总被引:1,自引:0,他引:1  
This study explores the epidemiology of an aerogenically transmitted infectious disease following an S.I.R. pattern in a host population with completely specified age-specified maternity and mortality schedules. A fully age-structured demographic-epidemiologic model is developed, and its demographic and epidemiologic behaviour is explored in numerical studies. The impact of variations in host population demographic structure upon the effect of immunization programs is also studied.  相似文献   

9.
Epidemic transmission is one of the critical density-dependent mechanisms that affect species viability and dynamics. In a predator-prey system, epidemic transmission can strongly affect the success probability of hunting, especially for social animals. Predators, therefore, will suffer from the positive density-dependence, i.e., Allee effect, due to epidemic transmission in the population. The rate of species contacting the epidemic, especially for those endangered or invasive, has largely increased due to the habitat destruction caused by anthropogenic disturbance. Using ordinary differential equations and cellular automata, we here explored the epidemic transmission in a predator-prey system. Results show that a moderate Allee effect will destabilize the dynamics, but it is not true for the extreme Allee effect (weak or strong). The predator-prey dynamics amazingly stabilize by the extreme Allee effect. Predators suffer the most from the epidemic disease at moderate transmission probability. Counter-intuitively, habitat destruction will benefit the control of the epidemic disease. The demographic stochasticity dramatically influences the spatial distribution of the system. The spatial distribution changes from oil-bubble-like (due to local interaction) to aggregated spatially scattered points (due to local interaction and demographic stochasticity). It indicates the possibility of using human disturbance in habitat as a potential epidemic-control method in conservation.  相似文献   

10.
The spread of a communicable disease is a complex spatio-temporal process shaped by the specific transmission mechanism, and diverse factors including the behavior, socio-economic and demographic properties of the host population. While the key factors shaping transmission of influenza and COVID-19 are beginning to be broadly understood, making precise forecasts on case count and mortality is still difficult. In this study we introduce the concept of a universal geospatial risk phenotype of individual US counties facilitating flu-like transmission mechanisms. We call this the Universal Influenza-like Transmission (UnIT) score, which is computed as an information-theoretic divergence of the local incidence time series from an high-risk process of epidemic initiation, inferred from almost a decade of flu season incidence data gleaned from the diagnostic history of nearly a third of the US population. Despite being computed from the past seasonal flu incidence records, the UnIT score emerges as the dominant factor explaining incidence trends for the COVID-19 pandemic over putative demographic and socio-economic factors. The predictive ability of the UnIT score is further demonstrated via county-specific weekly case count forecasts which consistently outperform the state of the art models throughout the time-line of the COVID-19 pandemic. This study demonstrates that knowledge of past epidemics may be used to chart the course of future ones, if transmission mechanisms are broadly similar, despite distinct disease processes and causative pathogens.  相似文献   

11.
Divorce appears to be one of the least studied demographic processes, both empirically and in two-sex demographic models. In this paper, we study mathematical as well as biological implications of the assumption that the divorce rate is positively affected by the amount of single (i.e., unmarried/unpaired) individuals in the population. We do that by modifying the classical exponential two-sex model accounting for pair formation and separation. We model the divorce rate as an increasing function of the single population size and show that the single population pressure on the established couples alters the exponential behavior of the classical model in which the divorce rate is assumed constant. In particular, the total population size becomes bounded and a unique positive equilibrium exists. In addition, a Hopf bifurcation analysis around the positive equilibrium shows that the modified model may exhibit sustained oscillations.  相似文献   

12.
In this paper we report the development of a highly efficient numerical method for determining the principal characteristics (velocity, leading edge width, and peak height) of spatial invasions or epidemics described by deterministic one-dimensiohal reaction-diffusion models whose dynamics include a threshold or Allee effect. We prove that this methodology produces the correct results for single-component models which are generalizations of the Fisher model, and then demonstrate by numerical experimentation that analogous methods work for a wide class of epidemic and invasion models including the S-I and S-E-I epidemic models and the Rosenzweig-McArthur predator-prey model. As examplary application of this approach we consider the atto-fox effect in the classic reaction-diffusion model of rabies in the European fox population and show that the appropriate threshold for this model is within an order of magnitude of the peak disease incidence and thus has potentially significant effects on epidemic properties. We then make a careful re-parameterisation of the model and show that the velocities calculated with realistic thresholds differ surprisingly little from those calculated from threshold-free models. We conclude that an appropriately thresholded reaction-diffusion model provides a robust representation of the initial epidemic wave and thus provides a sound basis on which to begin a properly mechanistic modelling enterprise aimed at understanding the long-term persistence of the disease.  相似文献   

13.
The dynamics of deterministic and stochastic discrete-time epidemic models are analyzed and compared. The discrete-time stochastic models are Markov chains, approximations to the continuous-time models. Models of SIS and SIR type with constant population size and general force of infection are analyzed, then a more general SIS model with variable population size is analyzed. In the deterministic models, the value of the basic reproductive number R0 determines persistence or extinction of the disease. If R0 < 1, the disease is eliminated, whereas if R0 > 1, the disease persists in the population. Since all stochastic models considered in this paper have finite state spaces with at least one absorbing state, ultimate disease extinction is certain regardless of the value of R0. However, in some cases, the time until disease extinction may be very long. In these cases, if the probability distribution is conditioned on non-extinction, then when R0 > 1, there exists a quasi-stationary probability distribution whose mean agrees with deterministic endemic equilibrium. The expected duration of the epidemic is investigated numerically.  相似文献   

14.
Understanding population extinctions is a chief goal of ecological theory. While stochastic theories of population growth are commonly used to forecast extinction, models used for prediction have not been adequately tested with experimental data. In a previously published experiment, variation in available food was experimentally manipulated in 281 laboratory populations of Daphnia magna to test hypothesized effects of environmental variation on population persistence. Here, half of those data were used to select and fit a stochastic model of population growth to predict extinctions of populations in the other half. When density-dependent demographic stochasticity was detected and incorporated in simple stochastic models, rates of population extinction were accurately predicted or only slightly biased. However, when density-dependent demographic stochasticity was not accounted for, as is usual when forecasting extinction of threatened and endangered species, predicted extinction rates were severely biased. Thus, an experimental demonstration shows that reliable estimates of extinction risk may be obtained for populations in variable environments if high-quality data are available for model selection and if density-dependent demographic stochasticity is accounted for. These results suggest that further consideration of density-dependent demographic stochasticity is required if predicted extinction rates are to be relied upon for conservation planning.  相似文献   

15.
Domestic dog rabies is an endemic disease in large parts of the developing world and also epidemic in previously free regions. For example, it continues to spread in eastern Indonesia and currently threatens adjacent rabies-free regions with high densities of free-roaming dogs, including remote northern Australia. Mathematical and simulation disease models are useful tools to provide insights on the most effective control strategies and to inform policy decisions. Existing rabies models typically focus on long-term control programs in endemic countries. However, simulation models describing the dog rabies incursion scenario in regions where rabies is still exotic are lacking. We here describe such a stochastic, spatially explicit rabies simulation model that is based on individual dog information collected in two remote regions in northern Australia. Illustrative simulations produced plausible results with epidemic characteristics expected for rabies outbreaks in disease free regions (mean R0 1.7, epidemic peak 97 days post-incursion, vaccination as the most effective response strategy). Systematic sensitivity analysis identified that model outcomes were most sensitive to seven of the 30 model parameters tested. This model is suitable for exploring rabies spread and control before an incursion in populations of largely free-roaming dogs that live close together with their owners. It can be used for ad-hoc contingency or response planning prior to and shortly after incursion of dog rabies in previously free regions. One challenge that remains is model parameterisation, particularly how dogs’ roaming and contacts and biting behaviours change following a rabies incursion in a previously rabies free population.  相似文献   

16.
R(0) has been defined as "The expected number of secondary infections originated by a "typical" infective individual when introduced into a population of susceptibles", and it is perhaps the single most important parameter in epidemic models. A general framework to calculate R(0) that can be applied to complicated stochastic epidemic models that may include demography, several strains, latent or carrier-like states, with or without density-dependent parameters is introduced. This framework helps us to understand the concept of a "typical" infective individual used in the deterministic definition of R(0). The method is illustrated with applications to several epidemic models, including some in which it has been found that the disease may persist even if R(0)<1. It is shown that although the probability of extinction is difficult to calculate in these latter cases, it is possible to give general conditions on the parameters under which eventual extinction is certain.  相似文献   

17.
Early models of directly transmitted wildlife disease focused on rabies transmission as a travelling wave, usually in a homogeneous density of wildlife. Such models of epi-enzootic diseases paid little attention to local-scale disease prevalence. Historical data on bovine tuberculosis (Tb) in cattle indicates that very localised areas can suffer from frequent repeat breakdowns, indicating that some environmental factors might be the cause. There are a number of different ways to simulate such local disease ‘hotspots’ in wildlife, and these resultant hotspots may mean that, overall, wildlife disease prevalence is very low. However, spatial and temporal persistence of this hotspot is more difficult to model. This heterogeneity in disease prevalence is difficult to produce in non-spatial models, and is one of the reasons why such models gave poor predictions of disease dynamics in the field. For example, Nigel Barlow struggled with finding a way to produce this spatial heterogeneity in mathematical models, culminating in his 2000 paper in Journal of Animal Ecology. This gave a phenomenological treatment, but not a causative solution. I take a look at the various causative methods of producing disease heterogeneity in simulation models of Tb, a chronic wildlife disease. These include (1) chance, (2) model artefacts, (3) population (e.g. demographic, genetic) heterogeneity and (4) environmental heterogeneity. I further argue that only (4) can be predicted over a medium timescale, and propose methods to assess the contribution of (1) and (2) in a model. I also discuss how spatial heterogeneity may affect Tb management.  相似文献   

18.
The main interest in epidemic models stems from their use in uncovering certain qualitative features of epidemic processes. A deterministic model of a general epidemic in a population with an arbitrary number of separate population centers is presented. The mixing within each center is assumed to be homogeneous, and the usual threshold theorem holds for each population. The mixing between centers is nonhomogeneous. This model is used to identify the necessary and sufficient conditions under which a disease will become endemic in the general population when each population center is below the threshold required for establishment of the disease and does not mix with other centers. These conditions depend critically on the concavity of the infection rate function with respect to the length of exposure time. The application of these results to host-vector models is discussed.  相似文献   

19.
The effect of heterogeneity within populations on the spread of infectious diseases has been a recent focus of research. Such heterogeneity may be, for example, spatial, temporal or behavioral in form. Generally, models that include population subdivision have assumed that individuals are permanently assigned to given behavioral states represented by the subpopulations. We consider a simple epidemic model in which a behavioral trait affects disease transmission, and this trait may be transferred among hosts as a consequence of social interaction. This creates a situation where the frequencies of different behavioral traits and disease states as well as their associations may change over time. We consider the impact of the culturally transmitted trait on the criterion for initial spread of the disease. We also explore the evolution of cultural traits in response to pathogen dynamics and show some conditions under which behavioral traits that reduce transmission evolve. We find that behaviors increasing the risk of infection can also evolve when they are inherently favored or when there is sufficient clustering of contacts between like behaviors.  相似文献   

20.
Mathematical models can help elucidate the spatio-temporal dynamics of epidemics as well as the impact of control measures. The gravity model for directly transmitted diseases is currently one of the most parsimonious models for spatial epidemic spread. This model uses distance-weighted, population size-dependent coupling to estimate host movement and disease incidence in metapopulations. The model captures overall measles dynamics in terms of underlying human movement in pre-vaccination England and Wales (previously established). In spatial models, edges often present a special challenge. Therefore, to test the model's robustness, we analyzed gravity model incidence predictions for coastal cities in England and Wales. Results show that, although predictions are accurate for inland towns, they significantly underestimate coastal persistence. We examine incidence, outbreak seasonality, and public transportation records, to show that the model's inaccuracies stem from an underestimation of total contacts per individual along the coast. We rescue this predicted 'edge effect' by increasing coastal contacts to approximate the number of per capita inland contacts. These results illustrate the impact of 'edge effects' on epidemic metapopulations in general and illustrate directions for the refinement of spatiotemporal epidemic models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号