首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The recent availability of the SHV-1 beta-lactamase crystal structure provides a framework for the understanding of the functional role of amino acid residues in this enzyme. To that end, we have constructed by site-directed mutagenesis 18 variants of the SHV beta-lactamase: an extended spectrum group: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, Asp104Lys-Thr235Ser-Gly238Ser, Asp179Asn, Arg164His, and Arg164Ser; an inhibitor resistant group: Arg244Ser, Met69Ile, Met69Leu, and Ser130Gly; mutants that are synergistic with those that confer resistance to oxyimino-cephalosporins: Asp104Glu, Asp104Lys, Glu240Lys, and Glu240Gln; and structurally conserved mutants: Thr235Ser, Thr235Ala and Glu166Ala. Among the extended spectrum group the combination of high-level ampicillin and cephalosporin resistance was demonstrated in the Escherichia coli DH10B strains possessing the Gly238Ser mutation: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, and Asp104Lys-Thr235Ser-Gly238Ser. Of the inhibitor resistant group, the Ser130Gly mutant was the most resistant to ampicillin/clavulanate. Using a polyclonal anti-SHV antibody, we assayed steady state protein expression levels of the SHV beta-lactamase variants. Mutants with the Gly238Ser substitution were among the most highly expressed. The Gly238Ser substitution resulted in an improved relative k(cat)/K(m) value for cephaloridine and oxyimino-cephalosporins compared to SHV-1 and Met69Ile. In our comparative survey, the Gly238Ser and extended spectrum beta-lactamase variants containing this substitution exhibited the greatest substrate versatility against penicillins and cephalosporins and greatest protein expression. This defines a unique role of Gly238Ser in broad-spectrum beta-lactam resistance in this family of class A beta-lactamases.  相似文献   

2.
The polymerase chain reaction was used to produce seven variants of Thermus thermophilus elongation factor G (EF-G) with mutations Glu494Ile, Gly495Asp, Lys496Ile, His509Leu, Lys564Ile, and Tyr568Lys, localized in the β-sheet of domain IV, and mutation Gly553Asp, residing in the loop between domains III and IV. It was demonstrated that only the Lys496Ile mutation, located close to the beginning of loop 501–504, influenced the efficiency of translocation in the presence of mutant EF-G. Functional analysis of all the known mutations of domain IV showed that only mutations in loops 501–504 and 573–578, localized to the tip of domain IV, had a pronounced effect on the translocation activity of EF-G. Upon the interaction of EF-G with ribosomes, these loops are the closest to the decoding center, formed in the structure of the 16S RNA in the 30S subunit. The role of EF-G and its domain IV in ribosomal translocation is discussed.  相似文献   

3.
A panel of random mutants within the DNA encoding the carboxy-terminal domain of Clostridium perfringens alpha-toxin was constructed. Three mutants were identified which encoded alpha-toxin variants (Lys330Glu, Asp305Gly, and Asp293Ser) with reduced hemolytic activity. These variants also had diminished phospholipase C activity toward aggregated egg yolk phospholipid and reduced cytotoxic and myotoxic activities. Asp305Gly showed a significantly increased enzymatic activity toward the monodisperse substrate rhoNPPC, whereas Asp293Ser displayed a reduced activity toward this phospholipid analogue. In addition, Asp293Ser showed an increased dependence on calcium for enzymatic activity toward aggregated phospholipid and appeared calcium-depleted in PAGE band-shift assays. In contrast, neither Lys330Glu nor Asp305Gly showed altered dependence on calcium for enzymatic activity toward aggregated phospholipid. Asp305 is located in the interface between the amino- and carboxy-terminal domains, whereas Asp293 and Lys330 are surface exposed residues which may play a role in the recognition of membrane phospholipids.  相似文献   

4.
Structure-function relationships of recombinant human butyrylcholinesterase (CHE) variants were investigated by Xenopus oocyte microinjection. A Ser-425 to Pro-425 mutation failed to modify ligand binding properties. In contrast, Asp-70 to Gly-70 substitution significantly reduced CHE binding capacity for succinylcholine and specific inhibitors, demonstrating Asp-70 as a key anionic site component for certain ligands. Furthermore, the presence of both mutations rendered CHE totally resistant to succinylcholine and dibucaine inhibition, while all mutant proteins bound butyrylthiocholine, benzoylcholine, and propionylcholine normally. These findings imply structural interactions between the conserved Asp-70 and Ser-425 regions in cholinesterases and suggest the contribution of additional electronegative amino acids to anionic site binding.  相似文献   

5.
Seven variants of elongation factor G (EF-G) from Thermus thermophilus with mutations Glu494Ile, Gly495Asp, Lys496Ile, His509Leu, Lys564Ile and Tyr568Lys located in the beta-sheet of its domain IV and mutation Gly553Asp in a loop between domain III and IV were constructed using polymerase chain reaction. Functional tests demonstrated that only mutation Lys496Ile, located in the vicinity of the loop 501-504, inhibits translocation effectiveness, in the presence of the mutated EF-G. The functional analysis of all mutations constructed up to now in domain IV reveals that only those located in loops 501-504 and 573-578 markedly decrease the translocation activity of EF-G. These loops are located at the tip of domain IV and close to the decoding center of the 30S ribosomal subunit upon EF-G interaction with the ribosome. The functional role of EF-G and its domain IV in ribosomal translocation is discussed.  相似文献   

6.
Sixteen residues in stalk segment S5 of the Ca(2+)-ATPase of sarcoplasmic reticulum were studied by site-directed mutagenesis. The rate of the Ca(2+) binding transition, determined at 0 degrees C, was enhanced relative to wild type in mutants Ile(743) --> Ala, Val(747) --> Ala, Glu(748) --> Ala, Glu(749) --> Ala, Met(757) --> Gly, and Gln(759) --> Ala and reduced in mutants Asp(737) --> Ala, Asp(738) --> Ala, Ala(752) --> Leu, and Tyr(754) --> Ala. In mutant Arg(762) --> Ile, the rate of the Ca(2+) binding transition was wild type like at 0 degrees C, whereas it was 3.5-fold reduced relative to wild type at 25 degrees C. The rate of dephosphorylation of the ADP-insensitive phosphoenzyme was increased conspicuously in mutants Ile(743) --> Ala and Tyr(754) --> Ala (close to 20-fold in the absence of K(+)) and increased to a lesser extent in Asn(739) --> Ala, Glu(749) --> Ala, Gly(750) --> Ala, Ala(752) --> Gly, Met(757) --> Gly, and Arg(762) --> Ile, whereas it was reduced in mutants Asp(737) --> Ala, Val(744) --> Gly, Val(744) --> Ala, Val(747) --> Ala, and Ala(752) --> Leu. In mutants Ile(743) --> Ala, Tyr(754) --> Ala, and Arg(762) --> Ile, the apparent affinities for vanadate were enhanced 23-, 30-, and 18-fold, respectively, relative to wild type. The rate of Ca(2+) dissociation was 11-fold increased in Gly(750) --> Ala and 2-fold reduced in Val(747) --> Ala. Mutants with alterations to Arg(751) either were not expressed at a significant level or were completely nonfunctional. The findings show that S5 plays a crucial role in mediating communication between the Ca(2+) binding pocket and the catalytic domain and that Arg(751) is important for both structural and functional integrity of the enzyme.  相似文献   

7.
The yeast cadmium factor (Ycf1p) is a vacuolar protein involved in resistance to Cd(2+) and to exogenous glutathione S-conjugate precursors in yeast. It belongs to the superfamily of ATP binding cassette transporters, which includes the human cystic fibrosis transmembrane conductance regulator and the multidrug resistance-associated protein. To examine the functional significance of conserved amino acid residues in Ycf1p, we performed an extensive mutational analysis. Twenty-two single amino acid substitutions or deletions were generated by site-directed mutagenesis in the nucleotide binding domains, the proposed regulatory domain, and the fourth cytoplasmic loop. Mutants were analyzed phenotypically by measuring their ability to grow in the presence of Cd(2+). Expression and subcellular localization of the mutant proteins were examined by immunodetection in vacuolar membranes. For functional characterization of the Ycf1p variants, the kinetic parameters of glutathione S-conjugated leukotriene C(4) transport were measured. Our analysis shows that residues Ile(711), Leu(712), Phe(713), Glu(927), and Gly(1413) are essential for Ycf1p expression. Five other amino acids, Gly(663), Gly(756), Asp(777), Gly(1306), and Gly(1311), are critical for Ycf1p function, and two residues, Glu(709) and Asp(821), are unnecessary for Ycf1p biogenesis and function. We also identify several regulatory domain mutants in which Cd(2+) tolerance of the mutant strain and transport activity of the protein are dissociated.  相似文献   

8.
Nine single mutations were introduced to amino acid residues Thr441, Glu442, Lys515, Arg560, Cys561, and Leu562 located in the nucleotide-binding domain of sarcoplasmic reticulum Ca2+-ATPase, and the functional consequences were studied in a direct nucleotide binding assay, as well as by steady-state and transient kinetic measurements of the overall and partial reactions of the transport cycle. Some partial reaction steps were also examined in mutants with alterations to Phe487, Arg489, and Lys492. The results implicate all these residues, except Cys561, in high affinity nucleotide binding at the substrate site. Mutations Thr441 --> Ala, Glu442 --> Ala, and Leu562 --> Phe were more detrimental to MgATP binding than to ATP binding, thus pointing to a role for these residues in the binding of Mg2+ or to a difference between the interactions with MgATP and ATP. Subsequent catalytic steps were also selectively affected by the mutations, showing the involvement of the nucleotide-binding domain in these reactions. Mutation of Arg560 inhibited phosphoryl transfer but enhanced the E1PCa2 --> E2P conformational transition, whereas mutations Thr441 --> Ala, Glu442 --> Ala, Lys492 --> Leu, and Lys515 --> Ala inhibited the E1PCa2 --> E2P transition. Hydrolysis of the E2P phosphoenzyme intermediate was enhanced in Glu442 --> Ala, Lys492 --> Leu, Lys515 --> Ala, and Arg560 --> Glu. None of the mutations affected the low affinity activation by nucleotide of the phosphoenzyme-processing steps, indicating that modulatory nucleotide interacts differently from substrate nucleotide. Mutation Glu442 --> Ala greatly enhanced reaction of Lys515 with fluorescein isothiocyanate, indicating that the two residues form a salt link in the native protein.  相似文献   

9.
A human serotonin transporter (SERT) model has been constructed based on the crystal structure of the bacterial homologue of Na(+)/Cl(-)-dependent neurotransmitter transporters from Aquifex aeolicus (LeuT(Aa)). Amino acids in the ligand binding area predicted by ICM pocket finder included Tyr95, Ala96, Asp98, Gly100 (transmembrane helix (TMH) 1), Ala169, Ile172, Ala173, Tyr176 (TMH3), Phe335, Ser336, Gly338, Phe341, Val343 (TMH6), Thr439, Ala441, and Gly442 (TMH8). The present model is an updated working tool for experimental studies on SERT.  相似文献   

10.
Li N  Hong W  Huang H  Lu H  Lin G  Hong M 《PloS one》2012,7(5):e36647
As an important structure in membrane proteins, transmembrane domains have been found to be crucial for properly targeting the protein to cell membrane as well as carrying out transport functions in transporters. Computer analysis of OATP sequences revealed transmembrane domain 2 (TM2) is among those transmembrane domains that have high amino acid identities within different family members. In the present study, we identify four amino acids (Asp70, Phe73, Glu74, and Gly76) that are essential for the transport function of OATP1B1, an OATP member that is specifically expressed in the human liver. A substitution of these four amino acids with alanine resulted in significantly reduced transport activity. Further mutagenesis showed the charged property of Asp70 and Glu74 is critical for proper function of the transporter protein. Comparison of the kinetic parameters indicated that Asp70 is likely to interact with the substrate while Glu74 may be involved in stabilizing the binding site through formation of a salt-bridge. The aromatic ring structure of Phe73 seems to play an important role because substitution of Phe73 with tyrosine, another amino acid with a similar structure, led to partially restored transport function. On the other hand, replacement of Gly76 with either alanine or valine could not recover the function of the transporter. Considering the nature of a transmembrane helix, we proposed that Gly76 may be important for maintaining the proper structure of the protein. Interestingly, when subjected to transport function analysis of higher concentration of esteone-3-sulfate (50 μM) that corresponds to the low affinity binding site of OATP1B1, mutants of Phe73, Glu74, and Gly76 all showed a transport function that is comparable to that of the wild-type, suggesting these amino acids may have less impact on the low affinity component of esteone-3-sulfate within OATP1B1, while Asp 70 seems to be involved in the interaction of both sites.  相似文献   

11.
Metal binding of superoxide dismutase from Thermus thermophilus HB27 was analyzed by comparing the related structures and sequences from different origins. Mutants (Ile166Leu, Asp167Glu, and Ile166Leu-Asp167Glu) were prepared and characterized. The mutants Asp167Glu and Ile166Leu-Asp167Glu changed their binding specificities from manganese to iron, which were manifested by the differences in color of the enzyme solutions and by flame atomic absorption analysis. Specific activities of the three mutants were 112, 52, and 62% of that of the wild-type enzyme, respectively. Asp167Glu and Ile166Leu-Asp167Glu only retained 6.8 and 6.1%, respectively, of the original activities after dialysis against 1 mM EDTA. Tryptophan fluorescence measurement and native gel electrophoresis implied that the three mutants could fold into a less condensed structure. Their folding and changes in the ion binding sites of the modeled structures might be the reason for their low affinities to metal ions. These findings increased our understanding of metal binding specificity of superoxide dismutase.  相似文献   

12.
13.
Fourteen quinolone-resistant Pseudomonas putida isolates were recovered from imported frozen shrimp sold in the United States. Two isolates harbored plasmids with qnrA and qnrB genes. PCR and DNA sequencing of quinolone resistance-determining regions identified novel substitutions in GyrA (His139→Glu and Thr128→Ala) and GyrB (Thr442→Asn, Gly470→Ala, and Ile487→Pro) and previously reported substitutions in GyrB (Asp489→Glu) and ParC (Thr105→Pro).  相似文献   

14.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

15.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

16.
The common, co-segregating Toll-like receptor 4 (TLR4) non-synonymous single nucleotide polymorphisms (SNPs), Asp299Gly and Thr399Ile, are associated with hyporesponsiveness to inhaled lipopolysaccharide (LPS) and increased susceptibility to Gram negative pathogens in humans. The purpose of this study was to identify the relative contributions of the Asp299Gly and the Thr399Ile variants in inhibiting the function of TLR4. 293/hMD2-CD14 cell line was transfected with lentiviral constructs containing human wild type (WT) TLR4-EGFP or TLR4-EGFP with Asp299Gly, Thr399Ile or Asp299Gly/Thr399Ile complementary DNA (cDNA). Multiple stable cell lines were established for each construct: three for WT TLR4, Asp299Gly, and Thr399Ile, and only two for Asp299Gly/Thr399Ile mutants and EGFP control. We did not observe a significant effect of polymorphisms on cell surface and intracellular TLR4 expression nor were there any significant differences in TLR4 and EGFP protein levels assessed by Western blotting and confocal microscopy among the multiple cell lines of each of the constructs. All cell lines had a dose-dependent responsiveness to LPS stimulation. However, compared to the WT TLR4, cells expressing TLR4 with Asp299Gly but not Thr399Ile polymorphism produced significantly less (P<0.05) IL-8 following LPS stimulation. Similarly, cells expressing TLR4 Asp299Gly but not Thr399Ile allele had significantly lower percentage of phosphorylated and total NF-κB P65 following LPS stimulation. While we could not do statistics on the Asp299Gly/Thr399Ile group, we observed a reduced responsiveness to LPS compared to WT TLR4. Taken together, we observed that the TLR4 Asp299Gly variant, but not the Thr399Ile variant, is responsible for impaired responsiveness of TLR4 to LPS and corresponding activation of NF-κB.  相似文献   

17.
Computer analysis of the crystallographic structure of the A subunit of Escherichia coil heat-labile toxin (LT) was used to predict residues involved in NAD binding, catalysis and toxicity. Following site-directed mutagenesis, the mutants obtained could be divided into three groups. The first group contained fully assembled, non-toxic new molecules containing mutations of single amino acids such as Val-53 → Glu or Asp, Ser-63 → Lys, Val-97 → Lys, Tyr-104 → Lys or Asp, and Ser-14 → Lys or Glu. This group also included mutations in amino acids such as Arg-7, Glu-110 and Glu-112 that were already known to be important for enzymatic activity. The second group was formed by mutations that caused the collapse or prevented the assembly of the A subunit: Leu-41 → Phe, Ala-45 → Tyr or Glu, Val-53 → Tyr, Val-60 → Gly, Ser-68 → Pro, His-70 → Pro, Val-97 → Tyr and Ser-114 → Tyr. The third group contained those molecules that maintained a wild-type level of toxicity in spite of the mutations introduced: Arg-54 → Lys or Ala, Tyr-59 → Met, Ser-68 → Lys, Ala-72 → Arg, His or Asp and Arg-192 → Asn. The results provide a further understanding of the structure–function of the active site and new, non-toxic mutants that may be useful for the development of vaccines against diarrhoeal diseases.  相似文献   

18.
Bradshaw JM  Waksman G 《Biochemistry》1999,38(16):5147-5154
SH2 domains are protein modules which interact with specific tyrosine phosphorylated sequences in target proteins. The SH2 domain of the Src kinase binds with high affinity to a tyrosine phosphorylated peptide containing the amino acids Glu, Glu, and Ile (EEI) at the positions +1, +2, and +3 C-terminal to the phosphotyrosine, respectively. To investigate the degree of selectivity of the Src SH2 domain for each amino acid of the EEI motif, the binding thermodynamics of a panel of substitutions at the +1 (Gln, Asp, Ala, Gly), +2 (Gln, Asp, Ala, Gly), and +3 (Leu, Val, Ala, Gly) positions were examined using titration microcalorimetry. It was revealed that the Src SH2 domain is insensitive (DeltaDeltaG degrees 相似文献   

19.
A mechanism proposed for lactose/H(+) symport by the lactose permease of Escherichia coli indicates that lactose permease is protonated prior to ligand binding. Moreover, in the ground state, the symported H(+) is shared between His322 (helix X) and Glu269 (helix VIII), while Glu325 (helix X) is charge-paired with Arg302 (helix IX). Substrate binding at the outer surface between helices IV (Glu126) and V (Arg144, Cys148) induces a conformational change that leads to transfer of the H(+) to Glu325 and reorientation of the binding site to the inner surface. After release of substrate, Glu325 is deprotonated on the inside due to re-juxtapositioning with Arg302. The conservative mutation Glu269-->Asp causes a 50-100-fold decrease in substrate binding affinity and markedly reduced active lactose transport, as well as decreased rates of equilibrium exchange and efflux. Gly-scanning mutagenesis of helix VIII was employed systematically with mutant Glu269-->Asp in an attempt to rescue function, and two mutants with increased activity are identified and characterized. Mutant Thr266-->Gly/Met267-->Gly/Glu269-->Asp binds ligand with increased affinity and catalyzes active lactose transport with a marked increase in rate; however, little improvement in efflux or equilibrium exchange is observed. In contrast, mutant Gly262-->Ala/Glu269-->Asp exhibits no improvement in ligand binding but a small increase in the rate of active transport; however, an increase in the steady-state level of accumulation, as well as efflux and equilibrium exchange is observed. Remarkably, when the two sets of mutations are combined, all translocation reactions are rescued to levels approximating those of wild-type permease. The findings support the contention that Glu269 plays a pivotal role in the mechanism of lactose/H(+) symport. Moreover, the results suggest that the two classes of mutants rescue activity by altering the equilibrium between outwardly and inwardly facing conformations of the permease such that impaired protonation and/or H(+) transfer is enhanced from one side of the membrane or the other. When the two sets of mutants are combined, the equilibrium between outwardly and inwardly facing conformations and thus protonation and H(+) transfer are restored.  相似文献   

20.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号