首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The analysis of the deduced amino acid sequence of the herpes simplex virus type 1 (HSV-1) DNA polymerase reported here suggests that the polymerase structure consists of domains carrying separate biological functions. The HSV-1 enzyme is known to possess 5'-3'-exonuclease (RNase H), 3'-5'-exonuclease, and DNA polymerase catalytic activities. Sequence analysis suggests an arrangement of these activities into distinct domains resembling the organization of Escherichia coli polymerase I. In order to more precisely define the structure and C-terminal limits of a putative catalytic domain responsible for the DNA polymerization activity of the HSV-1 enzyme, we have undertaken in vitro mutagenesis and computer modeling studies of the HSV-1 DNA polymerase gene. Sequence analysis predicts that the major DNA polymerization domain of the HSV-1 enzyme will be contained between residues 690 and 1100, and we present a three-dimensional model of this region, on the basis of the X-ray crystallographic structure of the E. coli polymerase I. Consistent with these structural and modeling studies, deletion analysis by in vitro mutagenesis of the HSV-1 DNA polymerase gene expressed in Saccharomyces cerevisiae has confirmed that certain amino acids from the C terminus (residues 1073 to 1144 and 1177 to 1235) can be deleted without destroying HSV-1 DNA polymerase catalytic activity and that the extreme N-terminal 227 residues are also not required for this activity.  相似文献   

2.
Isolation of the DNA polymerase alpha core enzyme from mouse cells   总被引:2,自引:0,他引:2  
DNA polymerase alpha has been purified from mouse hybridoma cells approximately 30,000-fold using a combination of conventional and high performance liquid chromatography. In contrast to previous characterizations of mammalian DNA polymerase alpha, this enzyme has a single high molecular mass polypeptide (185 kDa) in tight association with a 68-kDa polypeptide and this structure appears to be the core DNA polymerase of the mouse cells. The biochemically purified enzyme, with a specific activity of approximately 200,000 units/mg protein, has an estimated molecular mass by gel filtration chromatography of 240 kDa and sedimentation value of 9 S, consistent with the enzyme being a heterodimer of 185 and 68 kDa. The enzyme is sensitive to both N-ethylmaleimide and aphidicolin and insensitive to ddTTP. Using an activated DNA template, the apparent Km values for the deoxynucleotide triphosphates are approximately 0.5-1 microM. The purified DNA polymerase has neither exonuclease nor primase activities and is the predominant DNA polymerase alpha activity in the mouse cells.  相似文献   

3.
The conformation of a complex of a 41 mer/31 mer DNA fragment and the Klenow fragment of DNA polymerase I of Escherichia coli was studied by scanning tunnelling microscopy (STM). The results shows that near two turns of double helix of this DNA fragment was outside of enzyme while another part containing more than one turn of helix and 10 nucleotides single strand was combined with enzyme. The dimension and shape of DNA polymerase I (KF) in complex were different from that of free enzyme. The conformation of DNA-DNA polymerase I (KF) complex and the application of STM in studying structure of complex of DNA polymerase with DNA were discussed.  相似文献   

4.
Previous studies have shown that a large fraction of the host cell deoxyribonucleic acid (DNA) polymerase I (EC 2.7.7.7) becomes associated with the cell membrane shortly after infection with bacteriophages T4 and T7. The present investigation of the bound enzyme revealed that the polymerase activity can be eluted from the membrane with chelating agents, and that the material thus obtained shows many properties that distinguish it from purified DNA polymerase I. These include its chromatographic behavior, sedimentation rate, sensitivity to anti-DNA polymerase I antiserum, and activity with synthetic and natural DNA primers. Several of these physical and biological parameters were shown to revert slowly during storage to those exhibited by the purified enzyme. Efforts to determine whether the unusual properties of the membrane enzyme resulted from its association with DNA failed to support that possibility. These observations suggest that either the cause or the result of membrane binding of DNA polymerase I is a transient change in conformation or structure of the enzyme, with a resultant change in its enzymatic activity.  相似文献   

5.
Subnuclear localization of DNA polymerase alpha was studied in sea urchin embryos. Blastula nuclei treated with EDTA and potassium phosphate released subnuclear components bearing most of the nuclear DNA polymerase alpha. These components were suggested to be a part of nuclear membrane based on their buoyant densities (1.177 and 1.136 g/cm3) in isopyknic centrifugation and the nuclear pore-like structure. Contamination with DNA and endoplasmic reticulum membrane to the subnuclear components was shown to be negligible. These results suggested that DNA polymerase alpha associates with nuclear membrane of sea urchin embryos. Nuclear membrane deprived of DNA polymerase alpha was able to associate with nuclear DNA polymerase alpha from blastulae and the cytoplasmic enzyme of unfertilized eggs efficiently, but not with the cytoplasmic enzyme of gastrulae. This result suggests that the nuclear membrane is originates from the endoplasmic reticulum with which DNA polymerase alpha associates in unfertilized eggs.  相似文献   

6.
The crystal structure of the DNA polymerase encoded by gene 5 of bacteriophage T7, in a complex with its processivity factor, Escherichia coli thioredoxin, a primer-template, and an incoming deoxynucleoside triphosphate reveals a putative hydrogen bond between the C-terminal residue, histidine 704 of gene 5 protein, and an oxygen atom on the penultimate phosphate diester of the primer strand. Elimination of this electrostatic interaction by replacing His(704) with alanine renders the phage nonviable, and no DNA synthesis is observed in vivo. Polymerase activity of the genetically altered enzyme on primed M13 DNA is only 12% of the wild-type enzyme, and its processivity is drastically reduced. Kinetic parameters for binding a primer-template (K(D)(app)), nucleotide binding (K(m)), and k(off) for dissociation of the altered polymerase from a primer-template are not significantly different from that of wild-type T7 DNA polymerase. However, the decrease in polymerase activity is concomitant with increased hydrolytic activity, judging from the turnover of nucleoside triphosphate into the corresponding nucleoside monophosphate (percentage of turnover, 65%) during DNA synthesis. Biochemical data along with structural observations imply that the terminal amino acid residue of T7 DNA polymerase plays a critical role in partitioning DNA between the polymerase and exonuclease sites.  相似文献   

7.
We have previously demonstrated that the addition of a stoichiometric excess of the beta subunit of Escherichia coli DNA polymerase III holoenzyme to DNA polymerase III or holoenzyme itself can lead to an ATP-independent increase in the processivity of these enzyme forms (Crute, J. J., LaDuca, R. J., Johanson, K. O., McHenry, C. S., and Bambara, R. A. (1983) J. Biol. Chem. 258, 11344-11349). Here, we show that the beta subunit can interact directly with the catalytic core of the holoenzyme, DNA polymerase III, generating a new form of the enzyme with enhanced catalytic and processive capabilities. The addition of saturating levels of the beta subunit to the core DNA polymerase III enzyme results in as much as a 7-fold stimulation of synthetic activity. Two populations of DNA products were generated by the DNA polymerase III X beta enzyme complex. Short products resulting from the addition of 5-10 nucleotides/primer fragment were generated by DNA polymerase III in the presence and absence of added beta subunit. A second population of much longer products was generated only in beta-supplemented DNA polymerase III reactions. The DNA polymerase III-beta reaction was inhibited by single-stranded DNA binding protein and was unaffected by ATP, distinguishing it from the holoenzyme-catalyzed reaction. Complex formation of the DNA polymerase III core enzyme with beta increased the residence time of the enzyme on synthetic DNA templates. Our results demonstrate that the beta stimulation of DNA polymerase III can be attributed to a more efficient and highly processive elongation capability of the DNA polymerase III X beta complex. They also prove that at least part of beta's normal contribution to the DNA polymerase III holoenzyme reaction takes place through interaction with DNA polymerase III core enzyme components to produce the essential complex necessary for efficient elongation in vivo.  相似文献   

8.
9.
Poly(ADP-ribose) in the cellular response to DNA damage   总被引:32,自引:0,他引:32  
Poly(ADP-ribose) polymerase is a chromatin-bound enzyme which, on activation by DNA strand breaks, catalyzes the successive transfer of ADP-ribose units from NAD to nuclear proteins. Poly(ADP-ribose) synthesis is stimulated by DNA strand breaks, and the polymer may alter the structure and/or function of chromosomal proteins to facilitate the DNA repair process. Electronmicroscopic studies show that poly(ADP-ribose) unwinds the tightly packed nucleosomal structure of isolated chromatin. Recent studies also show that the presence of poly(ADP-ribose) enhances the activity of DNA ligase. This may increase the capacity of the cell to complete DNA repair. Inhibitors of poly(ADP-ribose) polymerase or deficiencies of the substrate, NAD, lead to retardation of the DNA repair process. When DNA strand breaks are extensive or when breaks fail to be repaired, the stimulus for activation of poly(ADP-ribose) persists and the activated enzyme is capable of totally consuming cellular pools of NAD. Depletion of NAD and consequent lowering of cellular ATP pools, due to activation of poly(ADP-ribose) polymerase, may account for rapid cell death before DNA repair takes place and before the genetic effects of DNA damage become manifest.  相似文献   

10.
M Y Lee  C K Tan  K M Downey  A G So 《Biochemistry》1984,23(9):1906-1913
DNA polymerase delta from calf thymus has been purified to apparent homogeneity by a new procedure which utilizes hydrophobic interaction chromatography with phenyl-Sepharose at an early step to separate most of the calcium-dependent protease activity from DNA polymerase delta and alpha. The purified enzyme migrates as a single protein band on polyacrylamide gel electrophoresis under nondenaturing conditions. The sedimentation coefficient of the enzyme is 7.9 S, and the Stokes radius is 53 A. A molecular weight of 173K has been calculated for the native enzyme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the homogeneous enzyme reveals two polypeptides of 125 and 48 kDa. This subunit structure differs from that of DNA polymerase delta prepared by our previous procedure, which was composed of subunits of 60 and 49 kDa [Lee, M. Y. W. T., Tan, C.-K., Downey , K. M., & So, A. G. (1981) Prog . Nucleic Acid Res. Mol. Biol. 26, 83-96], suggesting that the 60-kDa polypeptide may have been derived from the 125-kDa polypeptide during enzyme purification, possibly as the result of cleavage of an unusually sensitive peptide bond. DNA polymerase delta is separated from DNA polymerase alpha by hydrophobic interaction chromatography on phenyl-Sepharose; DNA polymerase delta is eluted at pH 7.2 and DNA polymerase alpha at pH 8.5. DNA polymerase delta can also be separated from DNA polymerase alpha by chromatography on hydroxylapatite; DNA polymerase alpha binds to hydroxylapatite in the presence of 0.5 M KCl, whereas DNA polymerase delta is eluted at 90 mM KCl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Subnuclear localization of DNA polymerase α was studied in sea urchin embryos. Blastula nuclei treated with EDTA and potassium phosphate released subnuclear components bearing most of the nuclear DNA polymerase α. These components were suggested to be a part of nuclear membrane based on their buoyant densities (1.177 and 1.136 g/cm3) in isopyknic centrifugation and the nuclear pore-like structure. Contamination with DNA and endoplasmic reticulum membrane to the subnuclear components was shown to be negligible. These results suggested that DNA polymerase α associates with nuclear membrane of sea urchin embryos. Nuclear membrane deprived of DNA polymerase α was able to associate with nuclear DNA polymerase α from blastulae and the cytoplasmic enzyme of unfertilized eggs efficiently, but not with the cytoplasmic enzyme of gastrulae. This result suggests that the nuclear membrane is originates from the endoplasmic reticulum with which DNA polymerase α associates in unfertilized eggs.  相似文献   

12.
The cDNA encoding the human polymerase beta from HeLa cells was PCR amplified and cloned, and its nucleotide sequence determined. The DNA sequence is identical to the polymerase beta cDNA sequence from Tera-2 cells. Three expression strategies were employed that were designed to maximize translation initiation of the polymerase beta mRNA in Escherichia coli and all yielded a high level of human polymerase beta. The recombinant protein was purified and its properties were compared with those of the recombinant rat enzyme. The domain structure and kinetic parameters (k(cat) and K(m)) were nearly identical. A mouse IgG monoclonal antibody to the rat enzyme (mAb-10S) was approximately 10-fold less reactive with the human enzyme than with the rat enzyme as determined by ELISA.  相似文献   

13.
The results presented in this paper indicate that the phi 29 DNA polymerase is the only enzyme required for efficient synthesis of full length phi 29 DNA with the phi 29 terminal protein, the initiation primer, as the only additional protein requirement. Analysis of phi 29 DNA polymerase activity in various in vitro DNA replication systems indicates that two main reasons are responsible for the efficiency of this minimal system: 1) the phi 29 DNA polymerase is highly processive in the absence of any accessory protein; 2) the polymerase itself is able to produce strand displacement coupled to the polymerization process. Using primed M13 DNA as template, the phi 29 DNA polymerase is able to synthesize DNA chains greater than 70 kilobase pairs. Furthermore, conditions that increase the stability of secondary structure in the template do not affect the processivity and strand displacement ability of the enzyme. Thus, the catalytic properties of the phi 29 DNA polymerase are appropriate for a phi 29 DNA replication mechanism involving two replication origins, strand displacement and continuous synthesis of both strands. The enzymology of phi 29 DNA replication would support a symmetrical model of DNA replication.  相似文献   

14.
Biochemical fractionation was combined with high resolution electron microscopic autoradiography to study the localization in rat liver nuclear matrix of attached DNA fragments, in vivo replicated DNA, and in vitro synthesized DNA. In particular, we determined the distribution of these DNA components with the peripheral nuclear lamina versus more internally localized structural elements of isolated nuclear matrix. Autoradiography demonstrated that the bulk of in vivo newly replicated DNA associated with the nuclear matrix (71%) was found within internal matrix regions. A similar interior localization was observed in isolated nuclei and in situ in whole liver tissue. Likewise, isolated nuclear lamina contained only a small amount (12%) of the total matrix-bound, newly replicated DNA. The structural localization of matrix-bound DNA fragments was examined following long-term in vivo labeling of the DNA. The radioactive DNA fragments were found predominantly within interior regions of the matrix structure (77%), and isolated nuclear lamina contained less than 15% of the total nuclear matrix-associated DNA. Most of the endogenous DNA template sites for the replicative enzyme DNA polymerase alpha (approximately 70%) were also sequestered within interior regions of the matrix. In contrast, a majority of the endogenous DNA template sites for DNA polymerase beta (a presumptive repair enzyme) were closely associated with the peripheral nuclear lamina. A similar spatial distribution for both polymerase activities was measured in isolated nuclei before matrix fractionation. Furthermore, isolated nuclear lamina contained only a small proportion of total matrix-bound DNA polymerase alpha endogenous and exogenous template activities (3-12%), but a considerable amount of the corresponding beta polymerase activities (47-52%). Our results support the hypothesis that DNA loops are both anchored and replicated at nuclear matrix-bound sites that are predominantly but not exclusively associated with interior components of the matrix structure. Our results also suggest that the sites of nuclear DNA polymerase beta-driven DNA synthesis are uniquely sequestered within the characteristic peripheral heterochromatin shell and associated nuclear envelope structure, where they may potentially participate in DNA repair and/or replicative functions.  相似文献   

15.
The secondary structure of DNA aptamer to Taq DNA polymerase was established as a hairpin. Both stem and loop structures of DNA ligand were shown to be involved in the interaction with Taq DNA polymerase. Moreover, the structure and sequence of DNA aptamer that was the most effective inhibitor of DNA polymerase activity were established. This crucial structure was evaluated as a GC-rich stem longer than 17 bp, and a loop consisting of 12 bases with strictly determined nucleotide sequence. It was demonstrated that nucleotide in position 23 counting from the 5"-end of DNA ligand was involved in direct contact with Taq DNA polymerase. The ability of optimized DNA aptamer TQ21-11 to form a complex with the enzyme was increased 5-fold in comparison to the initial aptamer.  相似文献   

16.
DNA polymerase epsilon is a mammalian polymerase that has a tightly associated 3'----5' exonuclease activity. Because of this readily detectable exonuclease activity, the enzyme has been regarded as a form of DNA polymerase delta, an enzyme which, together with DNA polymerase alpha, is in all probability required for the replication of chromosomal DNA. Recently, it was discovered that DNA polymerase epsilon is both catalytically and structurally distinct from DNA polymerase delta. The most striking difference between the two DNA polymerases is that processive DNA synthesis by DNA polymerase delta is dependent on proliferating cell nuclear antigen (PCNA), a replication factor, while DNA polymerase epsilon is inherently processive. DNA polymerase epsilon is required at least for the repair synthesis of UV-damaged DNA. DNA polymerases are highly conserved in eukaryotic cells. Mammalian DNA polymerases alpha, delta and epsilon are counterparts of yeast DNA polymerases I, III and II, respectively. Like DNA polymerases I and III, DNA polymerase II is also essential for the viability of cells, which suggests that DNA polymerase II (and epsilon) may play a role in DNA replication.  相似文献   

17.
C E Catalano  S J Benkovic 《Biochemistry》1989,28(10):4374-4382
The suicidal inactivation of Escherichia coli DNA polymerase I by epoxy-ATP has been previously reported (Abboud et al., 1978). We have examined in detail the mechanism of this inactivation utilizing a synthetic DNA template-primer of defined sequence. Epoxy-ATP inactivates the large fragment of DNA polymerase I (the Klenow fragment) in a time- and concentration-dependent manner (KI = 21 microM; kinact = 0.021 s-1). Concomitant with inactivation is the incorporation of epoxy-AMP into the primer strand. The elongated DNA duplex directly inhibits the polymerase activity of the enzyme (no time dependence) and is resistant to degradation by the 3'----5' exonuclease and pyrophosphorylase activities of the enzyme. Inactivation of the enzyme results from slow (4 X 10(-4) s-1) dissociation of the intact epoxy-terminated template-primer from the enzyme and is thus characterized as a tight-binding inhibition. Surprisingly, while the polymerase activity of the enzyme is completely suppressed by epoxy-ATP, the 3'----5' exonuclease activity remains intact. The data presented demonstrate that even though the polymerase site is occupied with duplex DNA, the enzyme can bind a second DNA duplex and carry out exonucleolytic cleavage.  相似文献   

18.
The replicative polymerase of bacteriophage T7 is structurally and mechanistically well characterized. The crystal structure of T7 DNA polymerase or gene 5 protein complexed to its processivity factor, Escherichia coli thioredoxin, a primer-template, and a dideoxynucleotide reveals how this enzyme interacts with the 3'-end of the primer-template, but does not show how thioredoxin confers processivity to the polymerase. In the crystal structure highly conserved amino acids Asn(335) and Ser(338) of the thumb subdomain of T7 DNA polymerase are seen to interact with phosphates 7 and 8 of the DNA template strand. Results with a mutant T7 DNA polymerase in which aliphatic residues are substituted for these amino acids and experiments with different length and methylphosphonate-modified primer-templates demonstrate that these interactions are essential for processive synthesis and d(A.T)(n) tract bypass. Our data with methylphosphonate-modified DNA suggests that thioredoxin confers processivity to T7 DNA polymerase in part by causing an interaction with the phosphate backbone or minor groove of DNA. Residues Asn(335) and Ser(338) may also function with a nearby helix-loop-helix motif located at residues 339-372 to enclose the DNA during processive synthesis. Our results suggest that this structure must be held close to the DNA by ionic interactions to function. These interactions also allow for DNA sliding but physically block the passage of a 3T bulge in the template. In contrast, yeast polymerase eta, a polymerase that non-mutagenically repairs cis-syn thymidine dimers, allows the same bulge to slide past its thumb subdomain during synthesis. A relaxed thumb interaction with the DNA could account for the notably low processivity of polymerase eta.  相似文献   

19.
A nucleotide-induced change in DNA polymerase structure governs the kinetics of polymerization by high fidelity DNA polymerases. Mutation of a GAG hinge (G542A/G544A) in T7 DNA polymerase resulted in a 1000-fold slower rate of conformational change, which then limited the rate of correct nucleotide incorporation. Rates of misincorporation were comparable to that seen for wild-type enzyme so that the net effect of the mutation was a large decrease in fidelity. We demonstrate that a presumably modest change from glycine to alanine 20 Å from the active site can severely restrict the flexibility of the enzyme structure needed to recognize and incorporate correct substrates with high specificity. These results emphasize the importance of the substrate-induced conformational change in governing nucleotide selectivity by accelerating the incorporation of correct base pairs but not mismatches.  相似文献   

20.
Y Li  S Korolev    G Waksman 《The EMBO journal》1998,17(24):7514-7525
The crystal structures of two ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I (Klentaq1) with a primer/template DNA and dideoxycytidine triphosphate, and that of a binary complex of the same enzyme with a primer/template DNA, were determined to a resolution of 2.3, 2.3 and 2.5 A, respectively. One ternary complex structure differs markedly from the two other structures by a large reorientation of the tip of the fingers domain. This structure, designated 'closed', represents the ternary polymerase complex caught in the act of incorporating a nucleotide. In the two other structures, the tip of the fingers domain is rotated outward by 46 degrees ('open') in an orientation similar to that of the apo form of Klentaq1. These structures provide the first direct evidence in DNA polymerase I enzymes of a large conformational change responsible for assembling an active ternary complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号