首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the epidemiology of fall-related injuries is well established for the elderly population over 65 years of age, the biomechanics of how, when and why injuries do and do not occur when arresting a fall have received relatively little attention. This paper reviews the epidemiological literature in the MEDLINE data base pertinent to the biomechanics of fall-related injuries, including data on fall rates, fall-related injury rates, fall directions and types of injuries available. It also covers primary sources not listed on MEDLINE, along with the pertinent biomechanics literature. Many falls in older adults are in a forward direction, and as a result the upper extremities are one of the most commonly injured structures, presumably in protecting the head and torso. In this review emphasis is placed on what is, and what is not, known of the biomechanical factors that determine the impact forces and injury risk associated with upper extremity injuries in forward falls. While decreased bone mineral density may be contributory, it is not a reliable predictor of fracture risk. Evidence is presented that fall-related impact forces can be reduced by appropriate volitional arrest strategies. Further theoretical and experimental research is needed to identify appropriate fall-arrest strategies for the elderly, as well as the physical capacities and skills required to do so. Inexpensive interventions might then be developed to teach safe fall-arrest techniques to older individuals.  相似文献   

2.
Traumatic brain injury (TBI), induced by impact of an object with the head, is a major health problem worldwide. Rats are a well-established animal analogue for study of TBI and the weight-drop impact-acceleration (WDIA) method is a well-established model in rats for creating diffuse TBI, the most common form of TBI seen in humans. However, little is known of the biomechanics of the WDIA method and, to address this, we have developed a four-degrees-of-freedom multi-body mass-spring-damper model for the WDIA test in rats. An analytical expression of the maximum skull acceleration, one of the important head injury predictor, was derived and it shows that the maximum skull acceleration is proportional to the impact velocity but independent of the impactor mass. Furthermore, a dimensional analysis disclosed that the maximum force on the brain and maximum relative displacement between brain and skull are also linearly proportional to impact velocity. Additionally, the effects of the impactor mass were examined through a parametric study from the developed multi-body dynamics model. It was found that increasing impactor mass increased these two brain injury predictors.  相似文献   

3.
In American football, impacts to the helmet and the resulting head accelerations are the primary cause of concussion injury and potentially chronic brain injury. The purpose of this study was to quantify exposures to impacts to the head (frequency, location and magnitude) for individual collegiate football players and to investigate differences in head impact exposure by player position. A total of 314 players were enrolled at three institutions and 286,636 head impacts were recorded over three seasons. The 95th percentile peak linear and rotational acceleration and HITsp (a composite severity measure) were 62.7g, 4378rad/s(2) and 32.6, respectively. These exposure measures as well as the frequency of impacts varied significantly by player position and by helmet impact location. Running backs (RB) and quarter backs (QB) received the greatest magnitude head impacts, while defensive line (DL), offensive line (OL) and line backers (LB) received the most frequent head impacts (more than twice as many than any other position). Impacts to the top of the helmet had the lowest peak rotational acceleration (2387rad/s(2)), but the greatest peak linear acceleration (72.4g), and were the least frequent of all locations (13.7%) among all positions. OL and QB had the highest (49.2%) and the lowest (23.7%) frequency, respectively, of front impacts. QB received the greatest magnitude (70.8g and 5428rad/s(2)) and the most frequent (44% and 38.9%) impacts to the back of the helmet. This study quantified head impact exposure in collegiate football, providing data that is critical to advancing the understanding of the biomechanics of concussive injuries and sub-concussive head impacts.  相似文献   

4.
Blunt impact trauma to the patellofemoral joint during car accidents, sporting activities, and falls can produce a range of injuries to the knee joint, including gross bone fracture, soft tissue injury, and/or microinjuries to bone and soft tissue. Currently, the only well-established knee injury criterion applies to knee impacts suffered during car accidents. This criterion is based solely on the peak impact load delivered to seated cadavers having a single knee flexion angle. More recent studies, however, suggest that the injury potential, its location, and the characteristics of the damage are also a function of knee flexion angle and the stiffness of the impacting structure. For example, at low flexion angles, fractures of the distal patella are common with a rigid impact interface, while at high flexion angles splitting of the femoral condyles is more evident. Low stiffness impact surfaces have been previously shown to distribute impact loads over the anterior surface of the patella to help mitigate gross and microscopic injuries in the 90 deg flexed knee. The objective of the current study was to determine if a deformable impact interface would just as effectively mitigate gross and microscopic injuries to the knee at various flexion angles. Paired experiments were conducted on contralateral knees of 18 human cadavers at three flexion angles (60, 90, 120 deg). One knee was subjected to a fracture level impact experiment with a rigid impactor, and the opposite knee was impacted with a deformable interface (3.3 MPa crush strength honeycomb material) to the same load. This (deformable) impact interface was effective at mitigating gross bone fractures at approximately 5 kN at all flexion angles, but the frequency of split fracture of the femoral condyles may not have been significantly reduced at 120 deg flexion. On the other hand, this deformable interface was not effective in mitigating microscopic injuries observed for all knee flexion angles. These new data, in concert with the existing literature, suggest the chosen impact interface was not optimal for knee injury protection in that fracture and other minor injuries were still produced. For example, in 18 cadavers a total of 20 gross fractures and 20 subfracture injuries were produced with a rigid interface and 5 gross fractures and 21 subfracture injuries with the deformable interface selected for the current study. Additional studies will be needed to optimize the knee impact interface for protection against gross and microscopic injuries to the knee.  相似文献   

5.
Human responses are critical to understanding injury biomechanics in blunt ballistic impacts, which are defined as 20-200 g projectiles impacting at 20-250 m/s. 13 human cadavers were exposed to three distinct ballistic impacts of the chest to determine force-time, deflection-time and force-deflection responses. Comparisons were made between biomechanical responses for ballistic impacts and those previously reported for lower speed, higher mass impacts. Impact condition B (140 g at 40 m/s) gave the largest peak force 10,602+/-2226 N and deflection 54.7+/-14.6 mm. Impact condition A (140 g at 20 m/s) involved lower impact energy and produced lower peak force 3383+/-761 N and deflection 25.9+/-3.1 mm, as did impact condition C (40 g at 60 m/s), which gave 3158+/-309 N and 20.1+/-7.8 mm. The results indicate each impact condition gives distinctive responses, which differ from those previously reported in the automotive literature for lower speed impacts. This information provides the foundation for future biomechanical research in the area of blunt ballistic impacts, specifically the development of test surrogates and evaluation of protective equipment.  相似文献   

6.
Traumatic brain injury is a leading cause of disability and injury-related death. To enhance our ability to prevent such injuries, brain response can be studied using validated finite element (FE) models. In the current study, a high-resolution, anatomically accurate FE model was developed from the International Consortium for Brain Mapping brain atlas. Due to wide variation in published brain material parameters, optimal brain properties were identified using a technique called Latin hypercube sampling, which optimized material properties against three experimental cadaver tests to achieve ideal biomechanics. Additionally, falx pretension and thickness were varied in a lateral impact variation. The atlas-based brain model (ABM) was subjected to the boundary conditions from three high-rate experimental cadaver tests with different material parameter combinations. Local displacements, determined experimentally using neutral density targets, were compared to displacements predicted by the ABM at the same locations. Error between the observed and predicted displacements was quantified using CORrelation and Analysis (CORA), an objective signal rating method that evaluates the correlation of two curves. An average CORA score was computed for each variation and maximized to identify the optimal combination of parameters. The strongest relationships between CORA and material parameters were observed for the shear parameters. Using properties obtained through the described multiobjective optimization, the ABM was validated in three impact configurations and shows good agreement with experimental data. The final model developed in this study consists of optimized brain material properties and was validated in three cadaver impacts against local brain displacement data.  相似文献   

7.
The objective of this study was to examine the role of body mass and subcutaneous fat in injury severity and pattern sustained by overweight drivers. Finite element models were created to represent the geometry and properties of subcutaneous adipose tissue in the torso with data obtained from reconstructed magnetic resonance imaging data-sets. The torso adipose tissue models were then integrated into the standard multibody dummy models together with increased inertial parameters and sizes of the limbs to represent overweight occupants. Frontal crash simulations were carried out considering a variety of occupant restraint systems and regional body injuries were measured. The results revealed that differences in body mass and fat distribution have an impact on injury severity and pattern. Even though the torso adipose tissue of overweight subjects contributed to reduce abdominal injury, the momentum effect of a greater body mass of overweight subjects was more dominant over the cushion effect of the adipose tissue, increasing risk of other regional body injuries except abdomen. Through statistical analysis of the results, strong correlations (p < 0.01) were found between body mass index and regional body injuries except neck injury. The analysis also revealed that a greater momentum of overweight males leads to greater forward torso and pelvic excursions that account for higher risks (p < 0.001) of head, thorax and lower extremity injury than observed in non-overweight males. The findings have important implications for improving the vehicle and occupant safety systems designed for the increasing global obese population.  相似文献   

8.
A three-dimensional finite element model of the human head is presented. The model has been validated against two sets of experimental results. To assess injury likelihood of the head subjected to impact loading, the structural intensity (SI) methodology is introduced in accordance with the prevailing practice in experimental biomechanics. SI is a vector quantity indicating the direction and magnitude of power flow inside a dynamically loaded structure. In this paper, the SI field inside the head model is computed for three cases, namely frontal, rear and side impacts. The results for the three cases have revealed that there exist power flow paths. The skull is, in general, a good energy flow channel. The study has also revealed the high possibility of spinal cord injury due to wave motion inside the head.  相似文献   

9.

Objective

To determine associations between the number of injuries sustained and three measures of disability 12-months post-injury for hospitalised patients.

Methods

Data from 27,840 adult (18+ years) participants, hospitalised for injury, were extracted for analysis from the Validating and Improving injury Burden Estimates (Injury-VIBES) Study. Modified Poisson and linear regression analyses were used to estimate relative risks and mean differences, respectively, for a range of outcomes (Glasgow Outcome Scale-Extended, GOS-E; EQ-5D and 12-item Short Form health survey physical and mental component summary scores, PCS-12 and MCS-12) according to the number of injuries sustained, adjusted for age, sex and contributing study.

Findings

More than half (54%) of patients had an injury to more than one ICD-10 body region and 62% had sustained more than one Global Burden of Disease injury type. The adjusted relative risk of a poor functional recovery (GOS-E<7) and of reporting problems on each of the items of the EQ-5D increased by 5–10% for each additional injury type, or body region, injured. Adjusted mean PCS-12 and MCS-12 scores worsened with each additional injury type, or body region, injured by 1.3–1.5 points and 0.5 points, respectively.

Conclusions

Consistent and strong relationships exist between the number of injury types and body regions injured and 12-month functional and health status outcomes. Existing composite measures of anatomical injury severity such as the NISS or ISS, which use up to three diagnoses only, may be insufficient for characterising or accounting for multiple injuries in disability studies. Future studies should consider the impact of multiple injuries to avoid under-estimation of injury burden.  相似文献   

10.
The influence of the falx and tentorium on brain injury biomechanics during impact was studied with finite element (FE) analysis. Three detailed 3D FE head models were created based on the images of a healthy, normal size head. Two of the models contained the addition of falx and tentorium with material properties from previously published experiments. Impact loadings from a reconstructed concussive case in a sport accident were applied to the two players involved. The results suggested that the falx and tentorium could induce large strains to the surrounding brain tissues, especially to the corpus callosum and brainstem. The tentorium seemed to constrain the motion of the cerebellum while inducing large strain in the brainstem in both players involved in the accident (one player had mainly coronal head rotation and the other had both coronal and transversal rotations). Since changed strain levels were observed in the brainstem and corpus callosum, which are classical sites for diffuse axonal injuries (DAI), we confirmed the importance of using accurate material properties for falx and tentorium in a FE head model when studying traumatic brain injuries.  相似文献   

11.
12.
Epidemiological data and clinical indicia reveal devastating consequences associated with pediatric neck injuries. Unfortunately, neither injury prevention nor clinical management strategies will be able to effectively reduce these injuries or their effects on children, without an understanding of the cervical spine developmental biomechanics. Thus, we investigated the relationship between spinal development and the functional (stiffness) and failure biomechanical characteristics of the cervical spine in a baboon model. A correlation study design was used to define the relationships between spinal tissue maturation and spinal biomechanics in both tension and compression. Eighteen baboon cervical spine specimens distributed across the developmental spectrum (1–26 human equivalent years) were dissected into osteoligamentous functional spinal units. Using a servo-hydraulic MTS, these specimens (Oc–C2, C3–C4, C5–C6, C7–T1) were non-destructively tested in tension and compression and then displaced to failure in tension while measuring the six-axes of loads and displacements. The functions describing the developmental biomechanical response of the cervical spine for stiffness and normalized stiffness exhibited a significant direct relationship in both tension and compression loading. Similarly, the tensile failure load and normalized failure load demonstrated significant maturational increases. Further, differences in biomechanical response were observed between the spinal levels examined and all levels exhibited clinically relevant failure patterns. These data support our understanding of the child cervical spine from a developmental biomechanics perspective and facilitate the development of injury prevention or management schema for the mitigation of child spine injuries and their deleterious effects.  相似文献   

13.
ACL damage is one the most frequent causes of knee injuries and thus has long been the focus of research in biomechanics and sports medicine. Due to the anisometric geometry and functional complexity of the ACL in the knee joint, it is usually difficult to experimentally study the biomechanics of ACLs. Anatomically ACL geometry was obtained from both MR images and anatomical observations. The optimal material parameters of the ACL were obtained by using an optimization-based material identification method that minimized the differences between experimental results from ACL specimens and FE simulations. The optimal FE model simulated biomechanical responses of the ACL during complex combined injury-causing knee movements, it predicted stress concentrations on the top and middle side of the posterolateral (PL) bundles. This model was further validated by a clinical case of ACL injury diagnosed by MRI and arthroscope, it demonstrated that the locations of rupture in the patient’s knee corresponded to those where the stresses and moments were predicted to be concentrated. The result implies that varus rotation played a contributing but secondary role in injury under combined movements, the ACL elevation angle, is positive correlated with the tensional loading tolerance of the ACL.  相似文献   

14.
Pigs and dogs have become common models of human thoraco-abdominal impact response. This paper summarizes a comparative analysis of the dog and pig to the live human accomplished through a series of necropsies performed on pigs and dogs. The results are summarized below. Emphasis is placed on specific aspects which are felt to be important for impact biomechanics. In particular, emphasis is placed upon the effect of tethering structures because of their potential in explaining mechanisms of injury for specific types of trauma such as aortic and certain liver injuries. Some aspects of tethering in the pig and dog are significantly different from that of the live human so care should be taken when using these animals in thoraco-abdominal biomechanics experiments.  相似文献   

15.
Extensive experimental work on the effects of penetrating annular injuries indicated that large injuries impact axial compressive properties of small animal intervertebral discs, yet there is some disagreement regarding the sensitivity of mechanical tests to small injury sizes. In order to understand the mechanism of injury size sensitivity, this study proposed a simple one dimensional model coupling elastic deformations in the annulus with fluid flow into and out of the nucleus through both porous boundaries and through a penetrating annular injury. The model was evaluated numerically in dynamic compression with parameters obtained by fitting the solution to experimental stress-relaxation data. The model predicted low sensitivity of mechanical changes to injury diameter at both small and large sizes (as measured by low and high ratios of injury diameter to annulus thickness), with a narrow range of high sensitivity in between. The size at which axial mechanics were most sensitive to injury size (i.e., critical injury size) increased with loading frequency. This study provides a quantitative hypothetical model of how penetrating annulus fibrosus injuries in discs with a gelatinous nucleus pulposus may alter disc mechanics by changing nucleus pulposus fluid pressurization through introduction of a new fluid transport pathway though the annulus. This model also explains how puncture-induced biomechanical changes depend on both injury size and test protocol.  相似文献   

16.
Mild traumatic brain injuries can lead to long-lasting cognitive and motor deficits, increasing the risk of future behavioral, neurological, and affective disorders. Our study focused on long-term behavioral deficits after repeated injury in which mice received either a single mild CHI (mCHI), a repeated mild CHI (rmCHI) consisting of one impact to each hemisphere separated by 3 days, or a moderate controlled cortical impact injury (CCI). Shams received only anesthesia. Behavioral tests were administered at 1, 3, 5, 7, and 90 days post-injury (dpi). CCI animals showed significant motor and sensory deficits in the early (1–7 dpi) and long-term (90 dpi) stages of testing. Interestingly, sensory and subtle motor deficits in rmCHI animals were found at 90 dpi. Most importantly, depression-like behaviors and social passiveness were observed in rmCHI animals at 90 dpi. These data suggest that mild concussive injuries lead to motor and sensory deficits and affective disorders that are not observed after moderate TBI.  相似文献   

17.
Of 1900 head injuries serious enough to be admitted to the neurosurgical unit in Glasgow over a five year period, 52 (2.7%) were due to "sport." Golf, horse-riding, and Association football were the sports most commonly linked with serious head injury. Golfing injuries were all compound depressed fractures, and all these patients made a good recovery; horse-riding produced more severe injuries, three of the eight patients being left with residual disability. Much attention has been directed to preventing repeated minor head injury in boxing, but this study emphasises the need for preventing both the primary head injury and secondary complications associated with other sports.  相似文献   

18.
When the head is subject to non-penetrating (blunt) impact, contusion-type injuries are commonly identified beneath the impact site (the coup) and, in some instances, at the opposite pole (the contre-coup). This pattern of injury has long eluded satisfactory explanation and blunt head injury mechanisms in general remain poorly understood. There are only a small number of studies in the open literature investigating the head''s response to short duration impacts, which can occur in collisions with light projectiles. As such, the head impact literature to date has focussed almost exclusively on impact scenarios which lead to a quasi-static pressure response in the brain. In order to investigate the response of the head to a wide range of impact durations, parametric numerical studies were performed on a highly bio-fidelic finite element model of the human head created from in vivo magnetic resonance imaging (MRI) scan data with non-linear tissue material properties. We demonstrate that short duration head impacts can lead to potentially deleterious transients of positive and negative intra-cranial pressure over an order of magnitude larger than those observed in the quasi-static regime despite reduced impact force and energy. The onset of this phenomenon is shown to be effectively predicted by the ratio of impact duration to the period of oscillation of the first ovalling mode of the system. These findings point to dramatically different pressure distributions in the brain and hence different patterns of injury depending on projectile mass, and provide a potential explanation for dual coup/contre-coup injuries observed clinically.  相似文献   

19.
The injury epidemiology of competitive power lifters was investigated to provide a basis for injury prevention initiatives in power lifting. Self-reported retrospective injury data for 1 year and selected biographical and training information were obtained via a 4-page injury survey from 82 men and 19 women of varying ages (Open and Masters), body masses (lightweight and heavyweight), and competitive standards (national and international). Injury was defined as any physical damage to the body that caused the lifter to miss or modify one or more training sessions or miss a competition. A total of 118 injuries, which equated to 1.2 +/- 1.1 injuries per lifter per year and 4.4 +/- 4.8 injuries per 1,000 hours of training, were reported. The most commonly injured body regions were the shoulder (36%), lower back (24%), elbow (11%), and knee (9%). More injuries appeared to be of a sudden (acute) (59%) rather than gradual (chronic) nature (41%). National competitors had a significantly greater rate of injury (5.8 +/- 4.9 per 1,000 hours) than international competitors (3.6 +/- 3.6 per 1,000 hours). The relative proportion of injuries at some body regions varied significantly as a function of competitive standard and gender. No significant differences in injury profile were seen between Open and Masters or between lightweight and heavyweight lifters. Power lifting appears to have a moderately low risk of injury, regardless of the lifter's age, body mass, competitive standard, or gender, compared with other sports. Future research should utilize a prospective cohort or case-controlled design to examine the effect of a range of other intrinsic and extrinsic factors on injury epidemiology and to assess the effects of various intervention strategies.  相似文献   

20.

Background

Because the characteristics of blast waves in water are different from those in air and because kinetic energy is liberated by a pressure wave at the water-air interface, thoracic injuries from mine blasts in shoals may be serious. The aim of the present study was to investigate the characteristics and mechanisms of cardiopulmonary injury caused by mine blasts in shoals.

Methods

To study the characteristics of cardiopulmonary injury, 56 animals were divided randomly into three experimental groups (12 animals in the sham group, 22 animals in the land group and 22 animals in the shoal group). To examine the biomechanics of injury, 20 animals were divided randomly into the land group and the shoal group. In the experimental model, the water surface was at the level of the rabbit''s xiphoid process, and paper electric detonators (600 mg RDX) were used to simulate mines. Electrocardiography and echocardiography were conducted, and arterial blood gases, serum levels of cardiac troponin I and creatine kinase-MB and other physiologic parameters were measured over a 12-hour period after detonation. Pressures in the thorax and abdomen and the acceleration of the thorax were measured.

Conclusion

The results indicate that severe cardiopulmonary injury and dysfunction occur following exposure to mine blasts in shoals. Therefore, the mechanisms of cardiopulmonary injury may result from shear waves that produce strain at the water-air interface. Another mechanism of injury includes the propagation of the shock wave from the planta to the thorax, which causes a much higher peak overpressure in the abdomen than in the thorax; as a result, the abdominal organs and diaphragm are thrust into the thorax, damaging the lungs and heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号