首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Essentially all of the selenium in the rat spermatozoon is bound to a polypeptide of Mr 15,000-17,000 confined to the capsule that surrounds the sperm mitochondria. Isoelectric focussing of isolated 75Se-labelled, carboxymethylated mitochondrial capsule protein (MCP) reveals the presence of at least four radioactive components, with a predominant charge isomer at pI4.6. The sperm selenoprotein appears to be identical with MCP, as judged by the exact coincidence of radioactivity and protein stain during two-dimensional electrophoresis. The temporal pattern of 75Se-labelling of rat caput epididymal spermatozoa after intratesticular 75Se injection suggests that maximum incorporation of 75Se into MCP occurs in step 7-step 12 spermatids and that 75Se uptake ceases during step 15 of spermiogenesis. The developmental appearance of sperm selenoprotein in rat testis therefore appears to lag several days behind that reported for MCP in mouse testis, suggesting the presence of selenium-free MCP in immature germ cells. SDS gel electrophoretic analysis of testis subcellular fractions 24 h after 75Se injection into rat testis at 21, 28 and 90 days of age indicates that sperm selenoprotein first appears in very low concentration during late meiosis and that its concentration increases sharply during early spermiogenesis. Additional 75Se-labelled polypeptides were detected on the gels, most of them of higher molecular weight than MCP. At least two of these (Mr 47,000 and 54,000) displayed a marked decrease in labelling between 5 and 24 h after injection into adult testis, coincident with a comparable increase in 75Se-labelled MCP, indicating that they may be precursors of MCP.  相似文献   

2.
We investigated the uptake and bioconcentration of the essential element selenium by a coccolithophorid, Emiliania huxleyi, using [75Se]selenite. The time course of 75Se uptake showed a biphasic pattern, namely a primary phase and a subsequent secondary phase. The primary and secondary phases are due to a rapid selenite uptake process that attained a stationary level within 2 min and a slow Se-accumulation process that continued at a constant rate for 4 h or longer, respectively. Kinetic analysis revealed that the selenite uptake process consists of two components, one saturable and one linearly related to substrate concentration. The Km of the saturable component was 29.8 nM selenite; the uptake activity of this component was suppressed by inhibitors of ATP biogenesis, suggesting that selenite uptake is driven by a high-affinity, active transport system. During a 6-h incubation of cells with [75Se]selenite, 70% of the intracellular 75Se was incorporated into low-molecular-mass compounds (LMCs), and 17% was incorporated into proteins, but [75Se]selenite was barely detectable. A pulse-chase experiment demonstrated that the 75Se that had accumulated in LMCs was transferred into proteins. When the syntheses of amino acids and proteins were each separately inhibited, 75Se incorporation into LMCs and proteins was decreased. These results suggest that E. huxleyi rapidly absorbs selenite, filling a small intracellular pool. Then, Se-containing LMCs are immediately synthesized from the selenite, creating a pool of LMCs that are then metabolized to selenoproteins.  相似文献   

3.
Glutathione peroxidase (GPx) activity and deposition of selenium (Se) were examined in tissues of rats given dietary Se for 7 wk as either selenite or selenomethionine (SeMet) with 75Se radiotracer of the same chemical form. On the basis of Se:75Se ratio, all tissues of the rats fed selenite were equilibrated with the dietary source, but tissues of the SeMet fed animals maintained a ratio of Se:75Se greater than the dietary ratio. Deposition of dietary Se and 75Se was higher in most tissues of rats fed SeMet. Muscle 75Se was the largest single tissue pool of 75Se in both groups accounting for one-third of recovered 75Se in the rats fed selenite, and one-half of recovered 75Se in the rats fed SeMet. Tissue GPx activities were not different between the two dietary groups. The proportion of Se as GPx in tissues was highest in erythrocytes of the rats fed selenite (.81) and lowest in testes and epididymides of the rats fed SeMet (.009). The proportion of Se present in cytosolic GPx was consistently higher in tissues of rats fed selenite. Erythrocytes of the rats fed SeMet had more 75Se associated with hemoglobin, and muscle cytosols of the rats fed selenite had more 75Se associated with the G-protein. The proportion of 75Se as SeMet determined by ion exchange chromatography of tissue hydrolysates was higher in tissues of rats fed SeMet (highest in muscle and hemoglobin, 70%, and lowest in testes, 16%). In contrast, selenocysteine was the predominant form of Se present in tissues of rats given selenite. These results indicate that the form of Se administered will influence the form in the tissues, the percentage of Se with GPx and the body burden of Se.  相似文献   

4.
Following administration by gavage [75Se]selenate and [75Se]selenite were absorbed from the gastrointestinal tract of fathead minnows (Pimephales promelas) at 94 and 80% efficiency, respectively. Approximately 12% of the [75Se]selenate administered by i.p. injection was eliminated via the urine, and across the gill within 2 hr. The urine was the primary route of elimination followed by the gill. The bile contained significantly lower amounts of 75Se than that eliminated either across the gill or in the urine. The mucus is capable of binding significant amounts of 75Se. Dietary pretreatment with selenite reduced the retention of a subsequent [75Se]selenite dose administered by gavage.  相似文献   

5.
The erythrocyte-free, isolated perfused rat liver was used to study the incorporation of selenium into glutathione peroxidase. Gel filtration and ion exchange chromatography of liver supernatant demonstrated 75Se incorporation into glutathione peroxidase. A 9-fold excess of unlabelled selenium as selenite or selenide very effectively reduced 75Se incorporation from L[75Se]-selenocystine, but a 100-fold excess of unlabelled selenium as selenocystine was relatively ineffective as compared to selenite or selenide in diluting 75Se incorporation from [75Se]selenite. These results indicate that selenide and selenite are more readily metabolized than is selenocysteine to the immediate selenium precursor used for glutathione peroxidase synthesis, and suggest a posttranslational modification at another amino acid residue, rather than direct incorporation of selenocysteine, as the mechanism for formation of the presumed selenocysteine moiety of the enzyme.  相似文献   

6.
Amino acid transfer nucleic acids (tRNAs) that contain selenium-modified bases are synthesized by Escherichia coli in the presence of low levels (0.1-0.5 microM) of [75Se]selenite or [75Se]selenate. The amount of selenium incorporated (1-2 g atoms/100 mol of tRNA) was unchanged by 10-20-fold variations in selenium or sulfate concentrations or by the addition of 1 mM cysteine, sulfide, or sulfite. Specific incorporation of selenium (as opposed to nonspecific substitution for sulfur) was further indicated by the different reversed phase chromatographic elution patterns of 35S- and 75Se-labeled tRNAs isolated from cells labeled with 35SO2-4 and 75SeO2-4. Also, E. coli mutants unable to synthesize an abundant sulfur-modified base, 4-thiouracil, nevertheless produced normal levels of selenium-modified tRNAs. Two different methods of distinguishing between aminoacylated and nonaminoacylated tRNA, one which examined mobility during reversed phase chromatography and another which employed anti-AMP antibodies, indicated that over 50% of the selenium-containing tRNA had lysine or glutamate acceptor activity.  相似文献   

7.
The usual first step in the intracellular metabolism of exogenous selenite is its chemical reaction with glutathione to form selenodiglutathione (1). We have investigated whether selenite also reacts intracellularly with other SH compounds. HeLa cells were exposed to [75Se]selenite and lysed with SDS. Cellular proteins and nucleic acids were precipitated with trichloroacetic acid, and the acid-soluble fraction was analyzed by ion-exchange thin-layer chromatography (ion-exchange TLC) and autoradiography. In control cells, the major [75Se]-containing species detected can be identified by its mobility as selenodiglutathione. Two other species were detected, which can be identified as selenodimercaptoethylamine and the mixed selenotrisulfide of mercaptoethylamine and glutathione. In contrast, in cells that were depleted of glutathione (by treatment with buthionine sulfoximine), very little, if any, selenodiglutathione was detected. However, new [75Se]-containing species were detected, which can be identified as selenodicysteine and the mixed selenotrisulfide of cysteine and glutathione. The same species were detected when [75Se]selenite was added to the acid-soluble fraction of a cell extract (as opposed to living cells), confirming that these compounds can be formed by nonenzymatic reactions.  相似文献   

8.
A gram-negative, strictly anaerobic, motile vibrio was isolated from a selenate-respiring enrichment culture. The isolate, designated strain SES-3, grew by coupling the oxidation of lactate to acetate plus CO2 with the concomitant reduction of selenate to selenite or of nitrate to ammonium. No growth was observed on sulfate or selenite, but cell suspensions readily reduced selenite to elemental selenium (Se0). Hence, SES-3 can carry out a complete reduction of selenate to Se0. Washed cell suspensions of selenate-grown cells did not reduce nitrate, and nitrate-grown cells did not reduce selenate, indicating that these reductions are achieved by separate inducible enzyme systems. However, both nitrate-grown and selenate-grown cells have a constitutive ability to reduce selenite or nitrite. The oxidation of [14C]lactate to 14CO2 coupled to the reduction of selenate or nitrate by cell suspensions was inhibited by CCCP (carbonyl cyanide m-chlorophenylhydrazone), cyanide, and azide. High concentrations of selenite (5 mM) were readily reduced to Se0 by selenate-grown cells, but selenite appeared to block the synthesis of pyruvate dehydrogenase. Tracer experiments with [75Se]selenite indicated that cell suspensions could achieve a rapid and quantitative reduction of selenite to Se0. This reduction was totally inhibited by sulfite, partially inhibited by selenate or nitrite, but unaffected by sulfate or nitrate. Cell suspensions could reduce thiosulfate, but not sulfite, to sulfide. These results suggest that reduction of selenite to Se0 may proceed, in part, by some of the components of a dissimilatory system for sulfur oxyanions.  相似文献   

9.
The marine coccolithophore Emiliania huxleyi (Haptophyta) requires selenium as an essential element for growth, and the active species absorbed is selenite, not selenate. This study characterized the selenite uptake mechanism using ??Se as a tracer. Kinetic analysis of selenite uptake showed the involvement of both active and passive transport processes. The active transport was suppressed by 0.5 mM vanadate, a membrane-permeable inhibitor of H?-ATPase, at pH 8.3. When the pH was lowered from 8.3 to 5.3, the selenite uptake activity greatly increased, even in the presence of vanadate, suggesting that the H? concentration gradient may be a motive force for selenite transport. [??Se]Selenite uptake at selenite-limiting concentrations was hardly affected by selenate, sulfate and sulfite, even at 100 μM. In contrast, 3 μM orthophosphate increased the K(m) 5-fold. These data showed that HSeO??, a dominant selenite species at acidic pH, is the active species for transport through the plasma membrane and transport is driven by ΔpH energized by H?-ATPase. Kinetic analysis showed that the selenite uptake activity was competitively inhibited by orthophosphate. Furthermore, the active selenite transport mechanism was shown to be induced de novo under Se-deficient conditions and induction was suppressed by the addition of either sufficient selenite or cycloheximide, an inhibitor of de novo protein synthesis. These results indicate that E. huxleyi cells developed an active selenite uptake mechanism to overcome the disadvantages of Se limitation in ecosystems, maintaining selenium metabolism and selenoproteins for high viability.  相似文献   

10.
Li ZY  Guo SY  Li L 《Bioresource technology》2003,89(2):171-176
The bioeffects of selenium on the growth of Spirulina platensis and the selenium distribution were investigated. S. platensis was batch cultured in Zarrouk medium containing increasing concentrations of sodium selenite. The biotransformation characteristic of selenium was analysed by the determination of the detailed selenium distribution forms. At 35 degrees C, 315.2 microEm(-2) x s(-1), sodium selenite concentrations below 400 mg x l(-1) were found to stimulate algal growth, especially in the range of 0.5-40 mg x l(-1). However, above 500 mg x l(-1) sodium selenite was toxic to this alga with the toxicity being related to the sulfite level in the medium. S. platensis was found to resist higher selenite by reducing toxic Se(IV) to nonsoluble Se(0). Selenium was accumulated efficiently in S. platensis during cultivation with accumulated selenium increasing with selenite concentration in the medium. It was demonstrated that inorganic selenite could be transformed into organic forms through binding with protein, lipids and polysaccharides and other cell components. The organic selenium accounted for 85.1% of the total accumulated selenium and was comprised of 25.2% water-soluble protein-bound, 10.6% lipids-bound and 2.1% polysaccharides-bound selenium. Among the organic fractions lipid possessed the strongest ability to accumulate Se (6.47 mg x kg(-1)). The 14.9% inorganic selenium in S. platensis was composed of Se(IV) (13.7%) and Se(VI) (1.2%).  相似文献   

11.
The influence of cysteine (Cys) on mucosal uptake of 75Se-labeled selenite in sheep midjejunum was investigated using a short-term uptake technique. L-Cys (concn.: 1.0 mmol/L) significantly stimulated uptake of Se from selenite (concn.: 10 mumols/L). The stimulatory effect of L-Cys on mucosal uptake of Se from selenite was Na(+)- and pH-dependent. In the absence of Na+, or at an acidic pH (5.0), the stimulatory effect of L-Cys was abolished. L-alanine and L-lysine, but not L-glutamic acid inhibited uptake of Se from selenite in the presence of L-Cys. Preincubation of mucosal preparations with 10 mmol/L L-Cys produced enhanced mucosal uptake of Se from selenite. It is concluded from these results that L-Cys stimulates absorption of Se from selenite probably by generation of selenodicysteine and maybe cysteine selenopersulfide that are subsequently transported across the intestinal brush border membrane by Na(+)-dependent amino acid carriers. Furthermore, intracellular generation of selenodicysteine might contribute to the uptake of Se from selenite by maintaining the concentration gradient for diffusive uptake of selenite.  相似文献   

12.
The form and distribution of selenium (Se) in proteins from selected tissues of the rat were studied by measuring 75Se radioactivity in animals provided for 5 months with [75Se]selenite as the main dietary source of Se. Equilibration of the animals to a constant specific activity of 75Se allowed the measurement of 75Se to be used as a specific elemental assay for Se. Skeletal muscle, liver and blood accounted for 73% of the whole-body Se and 95% of the total Se-dependent glutathione peroxidase activity. Over 80% of the whole-body Se was in protein in the form of the selenoamino acid, selenocysteine. All other forms of Se that were measured accounted for less than 3% of the whole-body Se. The Se in protein was distributed in seven subunit sizes and nine chromatographic forms. The Se in glutathione peroxidase accounted for one-third of the whole-body Se. These results show that the main use of dietary Se, as selenite, in rats is for the synthesis of selenocysteine-containing proteins. Furthermore, the presence of two-thirds of the whole-body Se in nonglutathione peroxidase, selenocysteine-containing proteins suggests that there may be other important mammalian selenoenzymes besides glutathione peroxidase.  相似文献   

13.
The metabolic detoxification of selenite and many other selenium compounds involves a series of S-adenosylmethionine-dependent methylations yielding dimethylselenide (DMSe), which is exhaled, and trimethylselenonium ion (TMSe), which is excreted in the urine. This paper shows that periodate-oxidized adenosine (Adox) inhibits these methylation reactions in vivo and increases the toxicity of selenite. When Adox was injected in mice at 100 mumol/kg 30 min before injection of [75Se]selenite at 0.4 mg Se/kg the appearances of [75Se]DMSe in the breath and [75Se]TMSe in the liver were completely inhibited for 90 min. This was mediated by accumulation of S-adenosylhomocysteine, the methyltransferase inhibitor, in the livers of Adox-treated mice due to inhibition of its hydrolase enzyme. During 24 h, Adox-treated mice excreted no detectable urinary [75Se]TMSe and exhaled only 20% as much [75Se]DMSe as controls. The urine of Adox-treated mice also contained S-adenosylhomocysteine at a level (ca. 4 mM), 200 times that of untreated mice, which provided a convenient index of methylation potential in the intact animal. When three groups of three mice each were injected with 100 mumol Adox/kg, selenite at 4 mg Se/kg, or a combination of the two, the mice receiving the combination were dead within 2 days, while the mice in the other two groups all survived at least 4 days. These results verify the enzymatic nature of selenium methylation in vivo, support its importance in detoxification, and indicate the value of Adox in further studies of selenium metabolism.  相似文献   

14.
Hepatic iodothyronine 5''-deiodinase. The role of selenium.   总被引:6,自引:0,他引:6       下载免费PDF全文
Selenium (Se) deficiency decreased by 8-fold the activity of type 1 iodothyronine 5'-deiodinase (ID-I) in hepatic microsomal fractions from rats. Solubilized hepatic microsomes from rats injected with 75Se-labelled Na2SeO3 4 days before killing were found by chromatography on agarose gels to contain a 75Se-containing fraction with ID-I activity. PAGE of this fraction under reducing conditions, followed by autoradiography, revealed a single 75Se-containing protein (Mr 27,400 +/- 300). This protein could also be labelled with 125I-bromoacetyl reverse tri-iodothyronine, an affinity label for ID-I. The results suggest that hepatic ID-I is a selenoprotein or has an Se-containing subunit essential for activity.  相似文献   

15.
Accumulation of selenium in a model freshwater microbial food web.   总被引:2,自引:0,他引:2       下载免费PDF全文
The transfer of selenium between bacteria and the ciliated protozoan, Paramecium putrinum, was examined in laboratory cultures. The population growth of the ciliate was not inhibited in the presence of the highest concentrations of dissolved selenite or selenate tested (10(3) micrograms liter-1). Experiments with radioactive 75selenite or 75selenate indicated that accumulation of selenium by ciliates through time was low when feeding and metabolism were reduced by incubating at 0 degrees C. However, selenium accumulated in ciliate biomass during incubation with dissolved 75Se and bacteria at 24 degrees C and also when bacteria prelabeled with 75Se were offered as food in the absence of dissolved selenium. When 75Se-labeled bacterial food was diluted by the addition of nonradioactive bacteria, the amount of selenite and selenate in ciliates decreased over time, indicating depuration by the ciliates. In longer-term (> 5-day) fed-batch incubations with 75selenite-labeled bacteria, the selenium concentration in ciliates equilibrated at approximately 1.4 micrograms of Se g (dry weight)-1. The selenium content of ciliates was similar to that of their bacterial food on a dry-weight basis. These data indicate that selenium uptake by this ciliate occurred primarily during feeding and that biomagnification of selenium did not occur in this simple food chain.  相似文献   

16.
Since differences have been found in animals, the efficacies of selenomethionine (SeMet), selenite, and selenocystine (SeCys) for glutathione peroxidase (GPx) induction and cellular incorporation were compared and some effects of interacting nutrients on SeMet utilization were examined in tissue cultures. In three cell lines, Chang liver cells, mouse myoblasts and human fibroblasts, selenite was more effective than SeMet for GPx induction. However, radiotracer studies showed that SeMet was more rapidly incorporated into all cells than either selenite or SeCys. Chromatography of acid hydrolysates of Chang liver cells grown with 75Se-labeled SeMet indicated that approximately 90% of incorporated 75Se remained as SeMet, and less than 10% was as SeCys, the form of Se in GPx. Selenite supplementation slightly reduced both the incorporation of 75SeMet and the proportion of cellular 75Se recoverable as SeCys in Chang liver cells. Supplementation with L-methionine, however, significantly reduced 75SeMet incorporation, but significantly increased the proportion of cellular 75Se recovered as SeCys. L-cystine supplementation had no effect on either the cellular incorporation of 75SeMet or the proportion of cellular 75Se recovered as SeCys. These studies of SeMet utilization and effects of interacting nutrients are reflective of observations on SeMet metabolism in whole animals and humans.  相似文献   

17.
Following an intravenous injection of 75Se, sodium selenite plasma samples were analyzed by two-dimensional electrophoresis. 75Se was detected by indirect autoradiography. From 0.5 to 53 hr postinjection of 75Se, 21 75Se peptides were detected. Both the isoelectric points and molecular weights of these peptides are reported. The molecular weights of the peptides ranged from 20,000 to 70,000 daltons.  相似文献   

18.
Treatment of fathead minnows (Pimephales promelas) with either [75Se]selenate, -selenite or -l-selenomethionine by gavage at 20 ng Se/g resulted in organ uptake and early distribution patterns which differed significantly between compounds. The greatest differences in uptake between compounds was observed in liver tissue which accumulated much less [75Se]selenate than either selenite or l-selenomethionine. The 75Se burdens and relative distribution among the various organs were nearly identical during the elimination phase for [75Se]selenate and -selenite. This suggests that selenium derived from these compounds converge to a common metabolic pool. The whole body T1/2, rate of 75Se uptake and magnitude of 75Se accumulation were generally greater for [75Se]selenomethionine than the inorganic forms. Selenium-75 was present in the bile following the oral administration of each compound. The partitioning of selenate and selenite into the plasma and cellular fraction of blood differs with both the compound and time following exposure.  相似文献   

19.
Recent reports have provided evidence that selenium is an essential growth factor for cells grown in tissue culture. The aim of the work reported in this paper was to evaluate mouse fibroblasts as a model for the study of selenium metabolism in mammalian cells. The results showed that transformed mouse lung fibroblasts grown in media containing 9.1% bovine serum did not show a growth response to added selenium as selenite over the range of 10–1000 ng/mL. Uptake of selenium by cells was a direct function of the selenium concentration in the medium. The rate of uptake varied with the time of exposure of the cells to the selenium, and to the form of selenium in the medium. Experiments using radioactive selenium showed that75Se from selenite was rapidly absorbed into the cell wall, but slowly incorporated into the soluble protein fraction.75Se from selenomethionine was more slowly absorbed into the cells, but once inside, it became rapidly incorporated into soluble cytoplasmic proteins. Cell fractionation and gel filtration procedures established that75Se from selenite was rapidly incorporated into glutathione peroxidase (GSHpx), whereas75Se from selenomethionine was initially incorporated into a wide spectrum of proteins and only after a longer period did the75Se peak become associated with GSHpx. These findings suggest fundamental differences exist in the manner in which mammalian cells initially absorb and metabolize different selenium compounds.  相似文献   

20.
The tissue uptake and distribution of injected [75Se]-sodium selenite as a variance with time and as influenced by dietary selenium status was followed in the tissues of Japanese quails,Coturnix coturnix japonica. Quails maintained on a low selenium semipurified (basal) diet and basal diets supplemented with 0.2 and 2.0 ppm selenium as sodium selenite were injected intraperitonially with75Se as sodium selenite (2.8 microcuries). The injected75Se was monitored in blood, liver, kidney, heart, and testis at 24, 72, and 144 h after injection. Maximal uptake of the injected75Se was observed in tissues of quails maintained on basal diet. The uptake of75Se in tissues in general was determined by the dietary Se status. Among the organs studied, kidney had the maximal level of75Se, 0.2 ppm (μg/g wet tissue) followed by liver, testis, and heart, but testis had the maximal level when the level per milligram of protein was considered, about 3.0 ng/mg protein, followed by liver, kidney, and heart. About 10–20% of the tissue75Se was located in the mitochondria and 50–60% in the post-mitochondrial supernatant fractions in all dietary Se levels. Significant incorporation of75Se in the mitochondrial membrane was observed. The percent distribution ratio between the membrane and matrix fractions of the mitochondria remained constant at all dietary Se levels which, in liver was 65∶35, in kidney 55∶45, and in testis 75∶25. However, in heart mitochondria, the distribution of75Se between membrane and matrix varied with dietary Se status, the ratio being 82∶18 in the basal group, and 72∶28 and 41∶59 in the 0.2 and 2.0 ppm Se-supplemented groups, respectively. This is indicative of a preferential uptake of75Se in the mitochondrial membrane in conditions of deficiency. About 40–60% of the mitochondrial membrane-associated75Se was released upon Triton treatment in all the organs. Of the membrane-bound75Se, about 10–15% was acid-labile in liver and kidney and 25% in the heart tissue. Possibilities of tissue specific roles, especially in the heart mitochondrial membrane-related processes, are indicated for selenium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号