首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

15.
Human milk contains a rich set of soluble, reducing glycans whose functions and bioactivities are not well understood. Because human milk glycans (HMGs) have been implicated as receptors for various pathogens, we explored the functional glycome of human milk using shotgun glycomics. The free glycans from pooled milk samples of donors with mixed Lewis and Secretor phenotypes were labeled with a fluorescent tag and separated via multidimensional HPLC to generate a tagged glycan library containing 247 HMG targets that were printed to generate the HMG shotgun glycan microarray (SGM). To investigate the potential role of HMGs as decoy receptors for rotavirus (RV), a leading cause of severe gastroenteritis in children, we interrogated the HMG SGM with recombinant forms of VP8* domains of the RV outer capsid spike protein VP4 from human neonatal strains N155(G10P[11]) and RV3(G3P[6]) and a bovine strain, B223(G10P[11]). Glycans that were bound by RV attachment proteins were selected for detailed structural analyses using metadata-assisted glycan sequencing, which compiles data on each glycan based on its binding by antibodies and lectins before and after exo- and endo-glycosidase digestion of the SGM, coupled with independent MSn analyses. These complementary structural approaches resulted in the identification of 32 glycans based on RV VP8* binding, many of which are novel HMGs, whose detailed structural assignments by MSn are described in a companion report. Although sialic acid has been thought to be important as a surface receptor for RVs, our studies indicated that sialic acid is not required for binding of glycans to individual VP8* domains. Remarkably, each VP8* recognized specific glycan determinants within a unique subset of related glycan structures where specificity differences arise from subtle differences in glycan structures.Human milk offers nutrition, innate immune protection, and other developmental benefits to infants (1, 2). In addition to essential nutrients and bioactive antibodies, human milk uniquely possesses a rich pool of free-reducing glycans (oligosaccharides), most of which are unique to human milk (3, 4). Depending on the blood group status and the lactation stage of an individual, the concentration of human milk glycans (HMGs)1 larger than lactose varies between 5 and 15 g/l, making them the third largest component of human milk after lactose and lipids (5). Over the past decades, more than 100 structurally distinct HMGs have been identified (69). All of these glycans originate from a lactose that is extended by type 1 (Galβ1–3GlcNAc) or type 2 (Galβ1–4GlcNAc) N-acetyllactosamine in either linear or branch forms and further modified with α-linked fucose and/or N-acetylneuraminic acid. It has been shown that HMGs are only minimally digested in the upper gastrointestinal tract and are transported intact into the lower parts of intestine (10, 11). Additionally, ∼1% to 2% of HMGs are excreted via an infant''s urine and seem to appear in the circulation (12, 13).Accumulated evidence has indicated that HMGs play multiple biological roles. In addition to having well-known prebiotic effects that promote the growth of beneficial microflora in the intestine (14, 15), HMGs are suggested to competitively interfere with pathogen attachment to the host cell surface by acting as soluble decoy receptors (1618), and such anti-adhesive effects are often glycan specific (19). For example, α1–2 fucosylated HMGs, which arise mainly from individuals that are Secretor(+), were observed to prevent the adherence of Campylobacter jejuni to epithelial cells (20) and were associated with protection against diarrhea caused by Campylobacter, caliciviruses, and Escherichia coli toxin in breastfed infants (2123). Sialylated HMGs were exclusive receptors for influenza viruses (2426) and showed a capacity to inhibit cholera toxin B (27), Vibrio cholera (28), enterotoxigenic E. coli, and uropathogenic E. coli strains (29, 30). It was also proposed that HMGs might serve as anti-inflammatory components and thus contribute to the lower incidence of necrotizing enterocolitis in breastfed infants. This idea is supported by the observations that the acidic fraction of HMG inhibits leukocyte rolling, adhesion, and activation (31) and disialyllacto-N-tetraose prevents necrotizing enterocolitis in neonatal rats (32). Furthermore, a variety of cytoprotective activities of HMGs have been reported against Clostridium difficile toxins (33), Helicobacter pylori (34, 35), Streptococcus pneumonia (36), Entamoeba histolytica (37), and HIV-1-gp120 (38). Although the numerous in vitro and in vivo data provide important information about the function of HMGs, these studies have typically used HMG fraction mixtures or a small panel of defined HMGs, and therefore the bioactive HMGs were not or poorly identified.In order to better understand the interactions of HMGs with various microorganisms, it is necessary to examine the entire milk metaglycome and identify the specific bioactive components, which is not possible via traditional methods that mainly focus on compositional analysis of HMGs (39). To find an efficient route for establishing the function–structure relationship of HMGs, we applied a “shotgun glycomics” approach to generate a shotgun glycan microarray (SGM) from isolated human milk glycans of a Lewis-positive, non-secretor individual (25, 40). The functional recognition studies, along with metadata-assisted glycan sequencing (MAGS), revealed novel epitopes/receptors for anti-TRA-1 antibodies, influenza viruses, and minute viruses of mice. Our work represented the first natural glycan microarray of HMGs containing over 100 glycans. Notably, the antibody binding data showed a lack of α1,2-fucosylated HMGs on this SGM, confirming that the donor was a non-secretor (41, 42).Here we describe our studies in which we prepared a SGM containing over 200 isolated HMG targets from pooled human milk of mixed Lewis and Secretor phenotypes and investigated the binding of rotavirus (RV) cell attachment protein to them. Human RVs are the leading cause of severe gastroenteritis in children, responsible for an estimated 453,000 deaths each year worldwide (43). As with many other pathogens, RV infection is initiated by the interaction with specific cellular glycans. The VP8* domain of the RV outer capsid spike protein VP4 mediates this process (44), but the identity of VP8* receptors is quite controversial. It was believed that VP8* recognized either terminal sialic acid or internal sialic acid, mainly based on crystallographic and NMR studies (4548). However, recently a human strain (HAL1166) with a P[14] VP8* was found to bind to A-type histo-blood group antigen (49), a neonatal strain with a P[11] VP8* bound to type 2 precursor glycans (50), and several other P types recognized secretor-related antigens Lewis b and H type 1 (51). These studies indicate that sialic acid might not be required by all RVs and that the glycan receptors are genotype-dependent. The infectivity of a porcine RV was inhibited by sialyl HMGs in vitro (52); however, there are limited data on human RVs. Here, we demonstrate that the VP8* of two different human neonatal RVs and an additional bovine strain bound to HMGs independent of sialic acid and that each VP8* demonstrated a unique glycan-binding specificity.  相似文献   

16.
17.
The Drosophila melanogaster RNA-induced silencing complex (RISC) forms a large ribonucleoprotein particle on small interfering RNAs (siRNAs) and catalyzes target mRNA cleavage during RNA interference (RNAi). Dicer-2, R2D2, Loquacious, and Argonaute-2 are examples of RISC-associated factors that are involved in RNAi. Holo-RISC is an ∼80 S small interfering ribonucleoprotein, which suggests that there are many additional proteins that participate in the RNAi pathway. In this study, we used siRNA affinity capture combined with mass spectrometry to identify novel components of the Drosophila RNAi machinery. Our study identified both established RISC components and novel siRNA-associated factors, many of which contain domains that are consistent with potential roles in RNAi. Functional analysis of these novel siRNA-associated proteins suggests that these factors may play an important role in RNAi.Small RNAs can regulate gene expression through a collection of mechanisms broadly termed RNA silencing. Small RNA-mediated silencing mechanisms occur in most species (15). The ability to silence the expression of specific genes using small RNAs via RNA interference (RNAi)1 has greatly facilitated our understanding of gene function in eukaryotes. In addition, small RNA-mediated gene silencing has therapeutic potential and holds promise for the treatment of specific diseases (6). Understanding the mechanism of RNAi and identifying the components of the RNAi machinery are essential for harnessing its full potential in both genome-wide screens and therapeutic applications.Recently, high throughput sequencing technology has revealed the presence of endogenous siRNAs in plant, fly, worm, and mammalian cells (716). These endogenous siRNAs target transposable element RNAs, pseudogene RNAs, and protein-coding mRNAs (17). Therefore, the endogenous siRNA pathway seems to have evolved as a mechanism of cellular defense against selfish genetic elements. The roles of these siRNAs in development and cell physiology are poorly understood.Drosophila melanogaster is a well characterized model system for studying RNAi. In Drosophila, long double-stranded RNAs (dsRNAs) are processed by the endonuclease Dicer-2 into 21-nucleotide siRNAs (18). After processing, these siRNAs form an initiator complex with Dicer-2 and the dsRNA-binding domain (dsRBD)-containing protein R2D2 (1923). This R2D2-Dicer-2 Initiator (RDI) complex transitions to a larger siRNP called the RISC loading complex (21, 22, 24, 25) and then to pre-RISC (26). Subsequently, pre-RISC matures into holo-RISC, which includes the catalytic activity necessary for target mRNA cleavage (21, 25, 27). The endonuclease subunit responsible for target cleavage in holo-RISC is Argonaute-2 (Ago2) (28, 29), which uses the guide strand of the siRNA duplex to target complementary mRNA sequences for cleavage and degradation.Studies of the RDI complex strongly suggest that it includes no other proteins besides Dicer-2 and R2D2 (22). Additional proteins such as Ago2 are present in pre-RISC and holo-RISC, but nonetheless the complete compositions of the RISC loading complex, pre-RISC, and holo-RISC are unknown. Furthermore, holo-RISC sediments at ∼80 S during sucrose gradient centrifugation (30). These observations indicate that additional protein factors associate with siRNAs. In this study, we identified siRNA-binding proteins from Drosophila embryo extracts. Target cleavage assays and immunoblotting of our siRNA affinity-selected proteins suggest that we purified active holo-RISC components. Proteomics analysis of the affinity matrix revealed both established and novel siRNA-associated proteins. Functional analyses of a subset of these factors suggest that they play important roles in RNAi.  相似文献   

18.
19.
20.
The human JC polyomavirus (JCV) is the etiologic agent of the fatal central nervous system (CNS) demyelinating disease progressive multifocal leukoencephalopathy (PML). PML typically occurs in immunosuppressed patients and is the direct result of JCV infection of oligodendrocytes. The initial event in infection of cells by JCV is attachment of the virus to receptors present on the surface of a susceptible cell. Our laboratory has been studying this critical event in the life cycle of JCV, and we have found that JCV binds to a limited number of cell surface receptors on human glial cells that are not shared by the related polyomavirus simian virus 40 (C. K. Liu, A. P. Hope, and W. J. Atwood, J. Neurovirol. 4:49–58, 1998). To further characterize specific JCV receptors on human glial cells, we tested specific neuraminidases, proteases, and phospholipases for the ability to inhibit JCV binding to and infection of glial cells. Several of the enzymes tested were capable of inhibiting virus binding to cells, but only neuraminidase was capable of inhibiting infection. The ability of neuraminidase to inhibit infection correlated with its ability to remove both α(2-3)- and α(2-6)-linked sialic acids from glial cells. A recombinant neuraminidase that specifically removes the α(2-3) linkage of sialic acid had no effect on virus binding or infection. A competition assay between virus and sialic acid-specific lectins that recognize either the α(2-3) or the α(2-6) linkage revealed that JCV preferentially interacts with α(2-6)-linked sialic acids on glial cells. Treatment of glial cells with tunicamycin, but not with benzyl N-acetyl-α-d-galactosaminide, inhibited infection by JCV, indicating that the sialylated JCV receptor is an N-linked glycoprotein. As sialic acid containing glycoproteins play a fundamental role in mediating many virus-cell and cell-cell recognition processes, it will be of interest to determine what role these receptors play in the pathogenesis of PML.Approximately 70% of the human population worldwide is seropositive for JC virus (JCV). Like other polyomaviruses, JCV establishes a lifelong latent or persistent infection in its natural host (40, 49, 50, 68, 72). Reactivation of JCV in the setting of an underlying immunosuppressive illness, such as AIDS, is thought to lead to virus dissemination to the central nervous system (CNS) and subsequent infection of oligodendrocytes (37, 40, 66, 68). Reactivation of latent JCV genomes already present in the CNS has also been postulated to contribute to the development of progressive multifocal leukoencephalopathy (PML) following immunosuppression (19, 48, 55, 70, 75). Approximately 4 to 6% of AIDS patients will develop PML during the course of their illness (10). In the CNS, JCV specifically infects oligodendrocytes and astrocytes. Outside the CNS, JCV genomes have been identified in the urogenital system, in the lymphoid system, and in B lymphocytes (2, 17, 18, 30, 47, 59). In vitro, JCV infects human glial cells and, to a limited extent, human B lymphocytes (3, 4, 39, 41, 42). Recently, JCV infection of tonsillar stromal cells and CD34+ B-cell precursors has been described (47). These observations have led to the suggestion that JCV may persist in a lymphoid compartment and that B cells may play a role in trafficking of JCV to the CNS (4, 30, 47).Virus-receptor interactions play a major role in determining virus tropism and tissue-specific pathology associated with virus infection. Viruses that have a very narrow host range and tissue tropism, such as JCV, are often shown to interact with high affinity to a limited number of specific receptors present on susceptible cells (26, 44). In some instances, virus tropism is strictly determined by the presence of specific receptors that mediate binding and entry (7, 16, 27, 35, 46, 53, 56, 67, 73, 74, 76). In other instances, however, successful entry into a cell is necessary but not sufficient for virus growth (5, 8, 45, 57). In these cases, additional permissive factors that interact with viral regulatory elements are required.The receptor binding characteristics of several polyomaviruses have been described. The mouse polyomavirus (PyV) receptor is an N-linked glycoprotein containing terminal α(2-3)-linked sialic acid (1214, 22, 28). Both the large and small plaque strains of PyV recognize α(2-3)-linked sialic acid. The small-plaque strain also recognizes a branched disialyl structure containing α(2-3)- and α(2-6)-linked sialic acids. Neither strain recognizes straight-chain α(2-6)-linked sialic acid. The ability of the large- and small-plaque strains of PyV to differentially recognize these sialic acid structures has been precisely mapped to a single amino acid in the major virus capsid protein VP1 (21). The large-plaque strains all contain a glycine at amino acid position 92 in VP1, and the small-plaque strains all contain a negatively charged glutamic acid at this position (21). In addition to forming small or large plaques, these strains also differ in the ability to induce tumors in mice (20). This finding suggests that receptor recognition plays an important role in the pathogenesis of PyV.The cell surface receptor for lymphotropic papovavirus (LPV) is an O-linked glycoprotein containing terminal α(2-6)-linked sialic acid (26, 33, 34). Infection with LPV is restricted to a subset of human B-cell lines, and recognition of specific receptors is a major determinant of the tropism of LPV for these cells (26).Unlike the other members of the polyomavirus family, infection of cells by simian virus 40 (SV40) is independent of cell surface sialic acids. Instead, SV40 infection is mediated by major histocompatibility complex (MHC)-encoded class I proteins (5, 11). MHC class I proteins also play a role in mediating the association of SV40 with caveolae, a prerequisite for successful targeting of the SV40 genome to the nucleus of a cell (1, 63). Not surprisingly, SV40 has been shown not to compete with the sialic acid-dependent polyomaviruses for binding to host cells (15, 26, 38, 58).Very little is known about the early steps of JCV binding to and infection of glial cells. Like other members of the polyomavirus family, JCV is known to interact with cell surface sialic acids (51, 52). A role for sialic acids in mediating infection of glial cells has not been described. It is also not known whether the sialic acid is linked to a glycoprotein or a glycolipid. In a previous report, we demonstrated that JCV bound to a limited number of cell surface receptors on SVG cells that were not shared by the related polyomavirus SV40 (38). In this report, we demonstrate that virus binding to and infection of SVG cells is dependent on an N-linked glycoprotein containing terminal α(2-3)- and α(2-6)-linked sialic acids. Competitive binding assays with sialic acid-specific lectins suggest that the virus preferentially interacts with α(2-6)-linked sialic acids. We are currently evaluating the role of this receptor in determining the tropism of JCV for glial cells and B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号