首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to explore ontogenetic variation in leaf-level physiological traits of Betula pendula trees, we measured changes in mass- (A mass) and area-based (A area) net photosynthesis under light-saturated conditions, mass- (RSmass) and area-based (RSarea) leaf respiration, relative growth rate, leaf mass per area (LMA), total nonstructural carbohydrates (TNC), and macro- and micronutrient concentrations. Expanding leaves maintained high rates of A area, but due to high growth respiration rates, net CO2 fixation occurred only at irradiances >200 μmol photons m–2 s–1. We found that full structural leaf development is not a necessary prerequisite for maintaining positive CO2 balance in young birch leaves. Maximum rates of A area were realized in late June and early July, whereas the highest values of A mass occurred in May and steadily declined thereafter. The maintenance respiration rate averaged ≈8 nmol CO2 g–1 s–1, whereas growth respiration varied between 0 and 65 nmol CO2 g–1 s–1. After reaching its lowest point in mid-June, leaf respiration increased gradually until the end of the growing season. Mass and area-based dark respiration were significantly positively correlated with LMA at stages of leaf maturity, and senescence. Concentrations of P and K decreased during leaf development and stabilized or increased during maturity, and concentrations of immobile elements such as Ca, Mn and B increased throughout the growing season. Identification of interrelations between leaf development, CO2 exchange, TNC and leaf nutrients allowed us to define factors related to ontogenetic variation in leaf-level physiological traits and can be helpful in establishing periods appropriate for sampling birch leaves for diagnostic purposes such as assessment of plant and site productivity or effects of biotic or abiotic factors. Received: 29 December 1998 / Accepted: 26 July 1999  相似文献   

2.
Photosynthesis-nitrogen relations in Amazonian tree species   总被引:18,自引:0,他引:18  
The relationships between leaf nitrogen (N), specific leaf area (SLA) (an inverse index of leaf thickness or density), and photosynthetic capacity (Amax) were studied in 23 Amazonian tree species to characterize scaling in these properties among natural populations of leaves of different ages and light microenvironments, and to examine how variation within species in N and SLA can influence the expression of the Amax-to-N relationship on mass versus area bases. The slope of the Amax-N relationship, change in A per change in N (mol CO2 gN-1 s-1), was consistently greater, by as much as 300%, when both measures were expressed on mass rather than area bases. The x-intercept of this relationship (N-compensation point) was generally positive on a mass but not an area basis. In this paper we address the causes and implications of such differences. Significant linear relationships (p<0.05) between mass-based leaf N (Nmass) and SLA were observed in 12 species and all 23 regressions had positive slopes. In 13 species, mass-based Amax (Amass) was positively related (p<0.05) with SLA. These patterns reflect the concurrent decline in Nmass and SLA with increasing leaf age. Significant (p<0.05) relationships between area-based leaf N (Narea) and SLA were observed in 18 species. In this case, all relationships had negative slopes. Taken collectively, and consistent in all species, as SLA decreased (leaves become thicker) across increasing leaf age and light gradients, Nmass also decreased, but proportionally more slowly, such that Narea increased. Due to the linear dependence of Amass on Nmass and a negative 4-intercept, thicker leaves (low SLA) therefore tend, on average, to have lower Nmass and Amass but higher Narea than thinner leaves. This tendency towards decreasing Amass with increasing Narea, resulting in a lower slope of the Amax-N relationship on an area than mass basis in 16 of 17 species where both were significant. For the sole species exception (higher area than mass-based slope) variation in Narea was related to variation in Nmass and not in SLA, and thus, these data are also consistent with this explanation. The relations between N, SLA and Amax explain how the rate of change in Amax per change in N can vary three-fold depending on whether a mass or area mode of expression is used.  相似文献   

3.
C. H. Lusk  P. B. Reich 《Oecologia》2000,123(3):318-329
It has been argued that plants adapted to low light should have lower carbon losses via dark respiration (Rd) than those not so adapted, and similarly, all species would be expected to down-regulate Rd in deep shade, because the associated advantages of high metabolic potential cannot be realized in such habitats. In order to test these hypotheses, and to explore the determinants of intraspecific variation in respiration rates, we measured Rd, leaf mass per unit area (LMA), and nitrogen content of mature foliage in juveniles of 11 cold-temperate tree species (angiosperms and conifers), growing in diverse light environments in forest understories in northern Minnesota. Among the seven angiosperm species, respiration on mass, area, and nitrogen bases showed significant negative overall relationships with shade tolerance level. Mass-based respiration rates (Rd mass) of angiosperms as a group showed a significant positive overall relationship with an index of light availability (percentage canopy openness, %CO). Rd mass of most conifers also showed evidence of acclimation of Rd mass to light availability. LMA of all species also increased with increasing %CO, but this response was generally much stronger in angiosperms than in conifers. As a result, the response of area-based respiration (Rd area) to %CO was dominated by ΔRd mass for conifers, and by ΔLMA for most angiosperms, i.e., functional types differed in the components of acclimation of Rd area to light availability. Among the seven angiosperm species, the relationships of leaf N on a mass basis (N mass) with %CO were modulated by shade tolerance: negative slopes in shade-tolerant species may be related to the steep increases in LMA of these taxa along gradients of increasing light intensity, and associated dilution of N-rich, metabolically active tissue by increasing investment in leaf structural components. Although N mass was therefore an unreliable predictor of variation in Rd mass along light gradients, respiration per unit leaf N (Rd/N) was significantly positively correlated with %CO for most species. This probably reflects variation in the proportion of leaf N allocated to protein and/or the influence of leaf carbohydrate status on Rd. Species shade tolerance differences were not significantly correlated with the magnitude of either ΔRd mass or ΔRd area, indicating that variation in acclimation potential of Rd is much less important than inherent differences in this trait. Acclimation of Rd mass to light availability appears to be a generalized feature of juvenile trees, and the important ecological trade-off is likely between high metabolic capacity in high light and low respiratory losses in low light. Received: 15 April 1999 / Accepted: 24 October 1999  相似文献   

4.
A whole-plant carbon balance model incorporating a light acclimation response was developed for Alocasia macrorrhiza based on empirical data and the current understanding of light acclimation in this species. The model was used to predict the relative growth rate (RGR) for plants that acclimated to photon flux density (PFD) by changing their leaf type, and for plants that produced only sun or shade leaves regardless of PFD. The predicted RGR was substantially higher for plants with shade leaves than for those with sun leaves at low PFD. However, the predicted RGR was not higher, and in fact was slightly lower, for plants with sun leaves than for those with shade leaves at high PFD. The decreased leaf area ratios (LARs) of the plants with sun leaves counteracted their higher photosynthetic capacities per unit leaf area (Amax). The model was manipulated by changing parameters to examine the sensitivity of RGR to variation in single factors. Overall, RGR was most sensitive to LAR and showed relatively little sensitivity to variation in Amax or maintenance respiration. Similarly, RGR was relatively insensitive to increases in leaf life-span beyond those observed. Respiration affected RGR only at low PFD, whereas Amax was moderately important only at high PFD.  相似文献   

5.
Questions: How are leaf attributes and relative growth rate (RGR) of the dominant tree species of tropical deciduous forest (TDF) affected by seasonal changes in soil moisture content (SMC)? What is the relationship of functional attributes with each other? Can leaf attributes singly or in combination predict the growth rate of tree species of TDF? Location: Sonebhadra district of Uttar Pradesh, India. Methods: Eight leaf attributes, specific leaf area (SLA); leaf carbon concentration (LCC); leaf nitrogen concentration (LNC); leaf phosphorus concentration (LPC); chlorophyll concentration (Chl), mass‐based stomatal conductance (Gsmass); mass based photosynthetic rate (Amass); intrinsic water use efficiency (WUEi); and relative growth rate (RGR), of six dominant tree species of a dry tropical forest on four sites were analysed for species, site and season effects over a 2‐year period. Step‐wise multiple regression was performed for predicting RGR from mean values of SMC and leaf attributes. Path analysis was used to determine which leaf attributes influence RGR directly and which indirectly. Results: Species differed significantly in terms of all leaf attributes and RGR. The response of species varied across sites and seasons. The attributes were positively interrelated, except for WUEi, which was negatively related to all other attributes. The positive correlation was strongest between Gsmass and Amass and the negative correlation was strongest between Gsmass and WUEi. Differences in RGR due to site were not significant when soil moisture was controlled, but differences due to season remained significant. The attributes showed plasticity across moisture gradients, which differed among attributes and species. Gsmass was the most plastic attribute. Among the six species, Terminalia tomentosa exhibited the greatest plasticity in six functional attributes. In the step‐wise multiple regression, Amass, SLA and Chl among leaf attributes and SMC among environmental factors influenced the RGR of tree species. Path analysis indicated the importance of SLA, LNC, Chl and Amass in determining RGR. Conclusion: A mass, SMC, SLA and Chl in combination can be used to predict RGR but could explain only three‐quarters of the variability in RGR, indicating that other traits/factors, not studied here, are also important in modulating growth of tropical trees. RGR of tree species in the dry tropical environment is determined by soil moisture, whereas the response of mature trees of different species is modulated by alterations in key functional attributes such as SLA, LNC and Chl.  相似文献   

6.
Abstract

Relative growth rate (RGR) is a fundamental trait for comparative plant ecology but cannot be measured in situ, leading to problems in interpreting vegetation function. However, the components of RGR (net assimilation rate (NAR), leaf area ratio (LAR), leaf weight ratio (LWR), and specific leaf area (SLA)) can be calculated for wild plants from morphological measurements (leaf area, leaf dry mass, whole plant dry mass), which potentially reflect RGR. Seeds of 19 species from Italian prealpine calcareous grasslands were collected and seedlings were cultivated under controlled conditions. RGR, NAR, LAR, LWR and SLA were analysed. The results demonstrated that RGR was positively correlated with SLA and LAR (p < 0.01). Furthermore, LAR was positively correlated with LWR and negatively with NAR (p < 0.05). Monocotyledons showed significantly higher LAR, LWR and NAR than dicotyledons, as the latter allocated a greater proportion of biomass to stems, but RGR and SLA showed no such phylogenetic constraint. Therefore SLA is the most reliable indicator of RGR in ecological and functional surveys of prealpine calcareous grasslands, and has the additional advantage that it can be measured from leaf material alone. Lower mean RGR and SLA for calcareous grassland species suggests that this vegetation is less likely to recover from the effects of disturbance than meadows and dry meadows.  相似文献   

7.
Previous modelling exercises and conceptual arguments have predicted that a reduction in biochemical capacity for photosynthesis (Aarea) at elevated CO2 may be compensated by an increase in mesophyll tissue growth if the total amount of photosynthetic machinery per unit leaf area is maintained (i.e. morphological upregulation). The model prediction was based on modelling photosynthesis as a function of leaf N per unit leaf area (Narea), where Narea = Nmass×LMA. Here, Nmass is percentage leaf N and is used to estimate biochemical capacity and LMA is leaf mass per unit leaf area and is an index of leaf morphology. To assess the relative importance of changes in biochemical capacity versus leaf morphology we need to control for multiple correlations that are known, or that are likely to exist between CO2 concentration, Narea, Nmass, LMA and Aarea. Although this is impractical experimentally, we can control for these correlations statistically using systems of linear multiple-regression equations. We developed a linear model to partition the response of Aarea to elevated CO2 into components representing the independent and interactive effects of changes in indexes of biochemical capacity, leaf morphology and CO2 limitation of photosynthesis. The model was fitted to data from three pine and seven deciduous tree species grown in separate chamber-based field experiments. Photosynthetic enhancement at elevated CO2 due to morphological upregulation was negligible for most species. The response of Aarea in these species was dominated by the reduction in CO2 limitation occurring at higher CO2 concentration. However, some species displayed a significant reduction in potential photosynthesis at elevated CO2 due to an increase in LMA that was independent of any changes in Narea. This morphologically based inhibition of Aarea combined additively with a reduction in biochemical capacity to significantly offset the direct enhancement of Aarea caused by reduced CO2 limitation in two species. This offset was 100% for Acer rubrum, resulting in no net effect of elevated CO2 on Aarea for this species, and 44% for Betula pendula. This analysis shows that interactions between biochemical and morphological responses to elevated CO2 can have important effects on photosynthesis.  相似文献   

8.
He Y L  Wang M T  Wen S J  Zhang Y H  Ma T  Du G Z 《农业工程》2007,27(8):3091-3097
We studied the influence of seed size on germination, seedling growth and seedling responses to light in Ligularia virgaurea, a clonal herb native to the Qinghai-Tibet Plateau. (1) Under unshaded conditions, large seeds had significantly (P < 0.001) higher rates of germination than did small seeds. Both large and small seeds showed significantly reduced levels of germination under shaded conditions. The magnitude of this effect was greater for small seeds than for large seed. (2) Seedlings from large seeds had significantly higher rates of biomass accumulation (g · day−1) than did seedlings from small seeds. The total biomass of seedlings from larger seeds is larger than that from smaller ones. And seedlings from large and small seeds also differed in biomass allocation. (3) Seedlings from small seeds have higher relative growth rates (RGR; g · g−1 · day−1) than do seedlings from large seeds under both shaded and unshaded conditions. In contrast, there was no significant difference in leaf area ratio (LAR), specific leaf area (SLA) or leaf weight ratio (LWR) between seedlings from small and large seeds. RGR, LAR, SLA and LWR were all significantly higher in seedlings grown under shaded conditions than under unshaded conditions.  相似文献   

9.
Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in aseasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO2 assimilation per unit mass (A mass), nitrogen concentration (N mass), and δ13C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO2 assimilation per unit area (A area), phosphorus concentration per unit mass (P mass), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree A area decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana δ13C increased four times more than tree δ13C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher A mass than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests.  相似文献   

10.
We investigated leaf physiological traits of dominant canopy trees in four lowland Panamanian forests with contrasting mean annual precipitation (1,800, 2,300, 3,100 and 3,500 mm). There was near complete turn-over of dominant canopy tree species among sites, resulting in greater dominance of evergreen species with long-lived leaves as precipitation increased. Mean structural and physiological traits changed along this gradient as predicted by cost–benefit theories of leaf life span. Nitrogen content per unit mass (Nmass) and light- and CO2-saturated photosynthetic rates per unit mass (Pmass) of upper canopy leaves decreased with annual precipitation, and these changes were partially explained by increasing leaf thickness and decreasing specific leaf area (SLA). Comparison of 1,800 mm and 3,100 mm sites, where canopy access was available through the use of construction cranes, revealed an association among extended leaf longevity, greater structural defense, higher midday leaf water potential, and lower Pmass, Nmass, and SLA at wetter sites. Shorter leaf life spans and more enriched foliar 15N values in drier sites suggest greater resorption and re-metabolism of leaf N in drier forest. Greater dominance of short-lived leaves with relatively high Pmass in drier sites reflects a strategy to maximize photosynthesis when water is available and to minimize water loss and respiration costs during rainless periods. Overall, our study links coordinated change in leaf functional traits that affect productivity and nutrient cycling to seasonality in lowland tropical forests.  相似文献   

11.
den Hertog  J.  Stulen  I.  Lambers  H. 《Plant Ecology》1993,104(1):369-378
The response ofPlantago major ssp,pleiosperma plants, grown on nutrient solution in a climate chamber, to a doubling of the ambient atmospheric CO2 concentration was investigated. Total dry matter production was increased by 30% after 3 weeks of exposure, due to a transient stimulation of the relative growth rate (RGR) during the first 10 days. Thereafter RGR returned to the level of control plants. Photosynthesis, expressed per unit leaf area, was stimulated during the first two weeks of the experiment, thereafter it dropped and nearly reached the level of the control plants. Root respiration was not affected by increased atmospheric CO2 levels, whereas shoot, dark respiration was stimulated throughout the experimental period. Dry matter allocation over leaves stems and roots was not affected by the CO2 level. SLA was reduced by 10%, which can partly be explained by an increased dry matter content of the leaves. Both in the early and later stages of the experiment, shoot respiration accounted for a larger part of the carbon budget in plants grown at elevated atmospheric CO2. Shifts in the total carbon budget were mainly due to the effects on shoot respiration. Leaf growth accounted for nearly 50% of the C budget at all stages of the experiment and in both treatments.Abbreviations LAR leaf area ratio - LWR leaf weight ratio - RGR relative growth rate - R/S root to shoot ratio - RWR root weight ratio - SLA specific leaf area - SWR stem weight ratio  相似文献   

12.
Summary The hypothesis was tested that faster growth of nitrophilic plants at high nitrogen (N) nutrition is counterbalanced by faster growth of non-nitrophilic plants at low N-nutrition. Ten annual plant species were used which originated from habitats of different N-availability. The species' preference for N was quantified by the N-number of Ellenberg (1979), a relative measure of nitrophily. The plants were cultivated in a growth cabinet at five levels of ammonium-nitrate supply. At low N-supply, the relative growth rate (RGR) was independent of nitrophily. At high N-supply, RGR tended to be higher in nitrophilic than in non-nitrophilic species. However, the response of RGR to N-supply was strongly and positively correlated with the nitrophily of species. Increasing N-supply enhanced partitioning to leaf weight per total biomass (LWR) and increased plant leaf area per total biomass (LAR). Specific leaf weight (SLW) and LWR were both higher in non-nitrophilic than in nitrophilic species at all levels of N-nutrition. NAR (growth per leaf area or net assimilation rate) increased with nitrophily only under conditions of high N-supply. RGR correlated positively with LAR, irrespective of N-nutrition. Under conditions of high N-supply RGR correlated with SLW negatively and with NAR positively.  相似文献   

13.
魏海霞  霍艳玲  周忠科  张治国 《生态学报》2022,42(20):8343-8351
叶功能性状与植物的生长对策及资源利用效率密切相关,研究叶功能性状沿气候梯度的变异特征能为理解植物对气候变化的响应机制提供一种简便可行的测定指标。以我国西北荒漠地区广泛分布的唐古特白刺(Nitraria tangutorum)为研究对象,对其比叶面积(SLA)、单位质量和单位面积叶氮含量(Nmass、Narea)、单位质量和单位面积叶建成成本(CCmass、CCarea)进行测定,分析这些叶功能性状及性状相关关系沿气候梯度的变异特征。结果表明,唐古特白刺叶功能性状(CCarea除外)在气候梯度下存在显著差异,其中,温度是决定唐古特白刺SLA变化的主要因子,SLA随着温度的增加而增加;降水和温度对唐古特白刺Nmass、Narea和CCmass均有显著影响,Nmass和Narea随着降水和温度的增加而降低,而CCmass呈增加趋势。沿气候梯度,唐古特白刺SLA-Nmass、CCmass-Nmass和CCarea-Narea的线性正相关关系发生平移,导致在相同SLA、CCmass和CCarea下,降水和温度较低的地区具有更高的Nmass和Narea。这一结果表明唐古特白刺能通过调节叶功能性状之间的关系来适应气候的变化,并形成性状间的最佳功能组合。  相似文献   

14.
陈静  庄立会  沐建华  周建松 《生态学报》2020,40(11):3706-3714
植物叶脉特征和叶氮含量的变化影响着叶片经济谱的形成,为验证叶片结构中叶脉网络构建提供了理论依据。该文以单位质量叶氮含量(N_(mass))和单位面积叶氮含量(N_(area))分别表示叶氮含量,采取主成分分析、线性回归分析的方法,研究了云南文山石漠化区旷地(Ⅰ)、林缘(Ⅱ)和林下(Ⅲ)3种自然生境下车桑子的叶脉密度(Vein density,VD)与N_(mass)和N_(area)的异速关系。结果表明:从乔灌群落的旷地到林下,车桑子的比叶面积、叶绿素总含量、光能利用率和N_(mass)逐渐增大,光饱和点、光补偿点、水分利用效率、VD、N_(area)逐渐减小,净光合速率、蒸腾速率、气孔导度呈先增大后减小的趋势。VD与叶氮含量呈不同程度的相关性,在生境I和III,VD与N_(mass)和N_(area)分别具有显著的负相关(P0.05)和正相关(P0.05);在生境Ⅱ,VD与N_(mass)和N_(area)分别呈不显著负相关(P0.05)和正相关(P0.05)。车桑子在旷地强光生境,高VD的叶片含有低N_(mass)高N_(area),而林下荫蔽生境偏向于相反的配置模式,反映了石漠化区植物较强的叶脉可塑性及其与氮利用性状的权衡机制。  相似文献   

15.

Background and Aims

A long-running debate centres on whether shade tolerance of tree seedlings is mainly a function of traits maximizing net carbon gain in low light, or of traits minimizing carbon loss. To test these alternatives, leaf display, light-interception efficiency, and simulated net daily carbon gain of juvenile temperate evergreens of differing shade tolerance were measured, and how these variables are influenced by ontogeny was queried.

Methods

The biomass distribution of juveniles (17–740 mm tall) of seven temperate rainforest evergreens growing in low (approx. 4 %) light in the understorey of a second-growth stand was quantified. Daytime and night-time gas exchange rates of leaves were also determined, and crown architecture was recorded digitally. YPLANT was used to model light interception and carbon gain.

Results

An index of species shade tolerance correlated closely with photosynthetic capacities and respiration rates per unit mass of leaves, but only weakly with respiration per unit area. Accumulation of many leaf cohorts by shade-tolerant species meant that their ratios of foliage area to biomass (LAR) decreased more gradually with ontogeny than those of light-demanders, but also increased self-shading; this depressed the foliage silhouette-to-area ratio (STAR), which was used as an index of light-interception efficiency. As a result, displayed leaf area ratio (LARd = LAR × STAR) of large seedlings was not related to species shade tolerance. Self-shading also caused simulated net daily carbon assimilation rates of shade-tolerant species to decrease with ontogeny, leading to a negative correlation of shade tolerance with net daily carbon gain of large (500 mm tall) seedlings in the understorey.

Conclusions

The results suggest that efficiency of energy capture is not an important correlate of shade tolerance in temperate rainforest evergreens. Ontogenetic increases in self-shading largely nullify the potential carbon gain advantages expected to result from low respiration rates and long leaf lifespans in shade-tolerant evergreens. The main advantage of their long-lived leaves is probably in reducing the costs of crown maintenance.  相似文献   

16.
为探究木兰科(Magnoliaceae)常绿与落叶物种叶片构建的生理生态策略,选取黄山木兰(Yulaniacylindrica)、玉兰(Y.denudata)和鸡公山玉兰(Y. jigongshanensis) 3种落叶物种,以及荷花玉兰(Magnolia grandiflora)、含笑花(Michelia figo)、石碌含笑(M. shiluensis) 3种常绿物种,对其叶片构建成本和叶片寿命相关的性状进行比较。结果表明,木兰科3落叶种的单位叶片面积成本(CCarea)显著低于3常绿种,但落叶和常绿物种的叶片质量成本(CCmass)差异不显著。落叶物种的叶氮、磷含量(Nmass,Pmass)和比叶面积(SLA)均显著高于常绿物种,而叶片寿命(LLS)显著低于常绿物种。CCarea与LLS呈显著正相关,Nmass、Pmass和SLA均与LLS呈显著负相关。这说明木兰科玉兰属落叶物种单位面积叶片构建成本小于常绿物种;落叶物种叶片寿命短,但采取低成本构建策略,提高比叶面积获得更多光资源,增加营养积累,也揭示了玉兰属落叶物种适应北亚热带较短的生长季和较低水热条件的生理生态策略。  相似文献   

17.
We investigated how water transport capacity, wood density and wood anatomy were related to leaf photosynthetic traits in two lowland forests in Panama. Leaf-specific hydraulic conductivity (kL) of upper branches was positively correlated with maximum rates of net CO2 assimilation per unit leaf area (Aarea) and stomatal conductance (gs) across 20 species of canopy trees. Maximum kL showed stronger correlation with Aarea than initial kL suggesting that allocation to photosynthetic potential is proportional to maximum water transport capacity. Terminal branch kL was negatively correlated with Aarea/gs and positively correlated with photosynthesis per unit N, indicating a trade-off of efficient use of water against efficient use of N in photosynthesis as water transport efficiency varied. Specific hydraulic conductivity calculated from xylem anatomical characteristics (ktheoretical) was positively related to Aarea and kL, consistent with relationships among physiological measurements. Branch wood density was negatively correlated with wood water storage at saturation, kL, Aarea, net CO2 assimilation per unit leaf mass (Amass), and minimum leaf water potential measured on covered leaves, suggesting that wood density constrains physiological function to specific operating ranges. Kinetic and static indices of branch water transport capacity thus exhibit considerable co-ordination with allocation to potential carbon gain. Our results indicate that understanding tree hydraulic architecture provides added insights to comparisons of leaf level measurements among species, and links photosynthetic allocation patterns with branch hydraulic processes.  相似文献   

18.
为研究物种在不同群落中光合生理特征的变化,以亚高寒草甸围封恢复地为研究对象,对样地内3个不同组成群落进行样方调查,测定了物种高度及各群落垂直方向上光照强度以及群落中3个共有种披碱草(Elymus dahuricus)、刺儿菜(Cirsium setosum)和紫花苜蓿(Medicago sativa)的净光合速率(Aarea)、叶片氮含量(Nmass)、比叶重(LMA)及光合氮利用效率(PNUE)。结果表明:(1)3个样地的群落组成有明显的差异,豆科植物的增多可以一定程度上改善群落氮养分状况,但植物叶片Nmass还受到群落优势种竞争的影响。(2)同一物种在不同群落的高度不同,不同群落垂直方向上光照强度也不相同,导致同一物种在不同群落中能够获得的光照强度有一定差异。(3)在养分、光照强度有差异的情况下,不同植物的Aarea、LMA及PNUE在不同群落中的变化趋势不尽相同,而Narea与Aarea的关系在总体上、群落间及物种间变化不大,基本上显示了较强的正相关关系。由此可见,群落组成、结构引起的光照及氮素差异是导致同一物种光合生理特征在不同群落中变化的重要因素,但不同物种光合生理特征对光照及氮素变化的响应不同。  相似文献   

19.
It is still unclear to what extent variations in foliar δ13C and nitrogen can be used to detect seasonal changes in canopy productivity. We hypothesize that in a wet and cloudy fir forest, seasonally higher litterfall and lower leaf area index (LAI) are correlated with higher mass-based leaf nitrogen (N mass) and net primary productivity (NPP), while foliar δ13C may change with specific leaf area (SLA), area-based leaf nitrogen (N area), and/or starch concentration. In order to test our hypotheses, stand-level litterfall and the means of δ13C, N mass, N area, SLA, and starch concentration of canopy needles for a wet and cloudy Abies fabri forest in the Gongga Mountains were monthly measured during the growing season. Seasonal estimates of LAI were obtained from our previous work. A conceptual model was used to predict seasonal NPP of the fir forest. Seasonal mean δ13C and N mass and climatic variables were used as inputs. The δ13C across 1–7-year-old needles increased from May to September associated with decreasing SLA and increasing N area. There were no significant differences in seasonal starch concentration. With increasing litterfall and decreasing LAI, seasonal mean N mass increased, while the δ13C varied little. The simulated NPP increased with increasing litterfall and related traits of N mass and N area. Our data generally supported the hypotheses. The results also suggest that in the forest with relatively moist and cloudy environment, the largest fraction of annual carbon gain may occur in the early part of the growing season when higher litterfall results in higher N mass of canopy leaves.  相似文献   

20.
Andrew G. Peterson 《Oecologia》1999,118(2):144-150
The relationship between photosynthetic carbon assimilation (A max) and leaf nitrogen content (N leaf) can be expressed on either a leaf area basis (A area vs N area) or a leaf mass basis (A mass vs N mass). Dimensional analysis shows that the units for the slope of this relationship are the same for both expressions (μmol [CO2] g−1 [N] s−1). Thus the slope measures the change in CO2 assimilation per gram of nitrogen, independent of leaf mass or leaf area. Although they have the same units, large differences between the area and mass-based slopes have been observed over a broad range of taxonomically diverse species. Some authors have claimed that regardless of these differences, the fundamental nature of the A max-N leaf relationship is independent of the units of expression. In contrast, other authors have claimed that the area-based A max-N leaf relationship is fundamentally different from the mass-based relationship because of interactions between A max, N leaf, and leaf mass per area (LMA, g [leaf] m−2 [leaf]). In this study we consider the mathematical relationships involved in the transformation from mass- to area-based expressions (and vice versa), and the implications this transformation has for the slope of the A max-N leaf relationship. We then show that the slope of the relationship is independent of the units of expression when the effect of LMA is controlled statistically using a multiple regression. The validity of this hypothesis is demonstrated using 13 taxonomically and functionally diverse C3 species. This analysis shows that the slope of the A max-N leaf relationship is similar for the mass- and area-based expressions and that significant errors in the estimate of the slope can arise when the effect of LMA is not controlled. Received: 7 May 1998 / Accepted: 19 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号