首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Tumor suppressor of lung cancer 1 (TSLC1), also known as SgIGSF, IGSF4, and SynCAM, is strongly expressed in spermatogenic cells undergoing the early and late phases of spermatogenesis (spermatogonia to zygotene spermatocytes and elongating spermatids to spermiation). Using embryonic stem cell technology to generate a null mutation of Tslc1 in mice, we found that Tslc1 null male mice were infertile. Tslc1 null adult testes showed that spermatogenesis had arrested at the spermatid stage, with degenerating and apoptotic spermatids sloughing off into the lumen. In adult mice, Tslc1 null round spermatids showed evidence of normal differentiation (an acrosomal cap and F-actin polarization indistinguishable from that of wild-type spermatids); however, the surviving spermatozoa were immature, malformed, found at very low levels in the epididymis, and rarely motile. Analysis of the first wave of spermatogenesis in Tslc1 null mice showed a delay in maturation by day 22 and degeneration of round spermatids by day 28. Expression profiling of the testes revealed that Tslc1 null mice showed increases in the expression levels of genes involved in apoptosis, adhesion, and the cytoskeleton. Taken together, these data show that Tslc1 is essential for normal spermatogenesis in mice.  相似文献   

2.
Cytochalasin D (CD) was used to perturb actin filaments of the Sertoli ectoplasmic specialization (ES)--a cytoskeletal complex of the Sertoli cell related to spermatids. CD (500 microM for 6 h) produced a loss of 88% of the ES facing the head region of early (Step 8) elongating spermatids as compared to vehicle (dimethylsulfoxide:saline) controls. Nitrobenzoxadiazole-phallacidin staining of F-actin revealed a CD-related loss of uniform fluorescence over the head of elongated spermatids. To examine for a possible relationship between the presence of actin and cell attachment at ES sites, hypertonic fixatives were introduced to provoke cell shrinkage and stress ES-associated junctions. After osmotic stress, cell-to-cell adhesion at ES sites remained intact in vehicle-treated animals. CD treatment caused Sertoli cells to separate from elongating spermatids at sites where ES had been lost from the Sertoli cell surface. It is suggested that actin of the ES plays a role in cell-to-cell interaction analogous to its possible role at the Sertoli cell barrier. In CD-treated animals, structures resembling tubulobulbar complexes frequently developed at sites where ES was lost, suggesting that the loss of ES has a facilitatory role in tubulobulbar complex formation. It is hypothesized that tubulobulbar complexes are devices that rid the cells of ES-associated junctional links to effect dissociation of the spermatid from the Sertoli cell during spermiation. Spermatids at Step 8 of development are known to become oriented with their acrosomes facing the base of the Sertoli cell. After CD treatment, a 5.8-fold increase in malorientation of Step 8 spermatids was noted. A role for the ES cytoskeletal complex in orienting the spermatid acrosome toward the basal aspect of the Sertoli cell is also suggested.  相似文献   

3.
Tubulobulbar complexes (TBCs) are composed of several tubular invaginations formed at the plasma membrane of testicular Sertoli cells. TBCs are transiently formed at the contact region with spermatids at spermatogenic stage VII in rat and mouse, and such TBC formation is prerequisite for spermatid release. Since the characteristic structure of TBCs suggests that the molecules implicated in endocytosis could be involved in TBC formation, we here investigated the localization and physiological roles of endocytic proteins, amphiphysin 1 and dynamin 2, at TBCs. We demonstrated by immunofluorescence that the endocytic proteins were concentrated at TBCs, where they colocalized with cytoskeletal proteins, such as actin and vinculin. Immunoelectron microscopy disclosed that both amphiphysin 1 and dynamin 2 were localized on TBC membrane. Next, we histologically examined the testis from amphiphysin 1 deficient {Amph(-/-)} mice. Morphometric analysis revealed that the number of TBCs was significantly reduced in Amph(-/-). The ratio of stage VIII seminiferous tubules was increased, and the ratio of stage IX was conversely decreased in Amph(-/-). Moreover, unreleased spermatids in stage VIII seminiferous tubules were increased in Amph(-/-), indicating that spermatid release and the following transition from stage VIII to IX was prolonged in Amph(-/-) mice. These results suggest that amphiphysin 1 and dynamin 2 are involved in TBC formation and spermatid release at Sertoli cells.  相似文献   

4.
Sato K  Tanaka F  Hasegawa H 《Human cell》2004,17(4):177-180
This study was undertaken to determine the expression time of fertilization and oocytes activation abilities of spermatids in the mouse. When elongating or elongated spermatids isolated from fresh testes of adult males (B6D2F1) were injected into mature mouse oocytes, both spermatids could activate the mature oocytes and occur fertilization. On the one hand, the round spermatids could not activate mature oocytes, when microinjected into oocytes. In some experiments, recovered round spermatids were cultured under co-culture systems using Sertoli cells as a feeder cell. Under the co-culture system, developed elongating spermatids could stimulate and fertilized mature oocytes. These results indicate that the start of oocyte activation appearance is between the stage of round spermatid and elongating spermatids and the activation ability increases with the advance of spermiogensis. On the other hand, round spermatids isolated from males of ICR strain mouse already have the oocyte activation ability and the fertilizing ability. The result obtained suggests that the expression time of the oocyte activating ability is difficult between the mouse strain.  相似文献   

5.
In order to test the hypothesis that a lack of energy could be a cause of germ cell death at high temperatures, cryptorchid rats testes were infused with lactate, delivered by osmotic pumps over 3-15 days. In cryptorchid testes, the spermatids and spermatocytes were lost between 3 and 8 days. In cryptorchid testes supplemented with lactate, elongated spermatids persisted in a few seminiferous tubules at Day 15. Elimination of round spermatids occurred progressively between 3 and 15 days, mostly at stage VIII. The loss of spermatocytes increased after 8 days, and 30% of seminiferous tubules still contained meiotic or meiotic plus spermiogenetic cells at Day 15. After 8 days, the chromatin of step 8 round spermatids was abnormal and nuclear elongation did not commence. The Sertoli cell cytoplasm that was retracted toward the basal compartment of the seminiferous epithelium could not hold the germ cells of the adluminal compartment. Therefore, attachment of germ cells to Sertoli cells and the supply of lactate seem necessary for the development of germ cells at high temperatures. The improvement in spermatogenesis in cryptorchid supplemented testes for several days is a new finding.  相似文献   

6.
Germinal epithelium of seminiferous tubules in adult, infertile hypodactylous males displays significant reduction in the number of germ-line cells. Detection of apoptosis in the germ-line cells during postnatal differentiation was performed to elucidate the mechanism of the decreased number of germ cells in the testes of adult rats. Evaluation of DNA fragmentation and expression of activated caspase-3 in germ cells did not confirm marked germ cell death during the onset of spermatogenesis as a main cause of significant reduction of germ cells in Hd/Hd testes of adult males. The primary cause of spermatogenesis defect seems to be rather associated with a disorder in the cell cycle regulation and interrelation of germ-line cells with Sertoli cells.  相似文献   

7.
Early morphological changes in the rat Sertoli cell induced by the fungicide carbendazim (methyl-2-benzimidazole carbamate; MBC), a metabolite of benomyl, were examined. Adult rats were treated with single doses of MBC (400mg/kg) or vehicle and examined by light and electron microscopy at 3 hr post-treatment. Sloughing of elongating spermatid clusters was observed in all stages of spermatogenesis, except for Stages III–V. Cleavage occurred near the apical region of the seminiferous epithelium where cytoplasmic processes of the Sertoli cell surround the heads of elongating spermatids. The cleaved cytoplasm remained attached to the sloughed spermatids and ectoplasmic specializations remained undamaged. Intact microtubules were observed in the apical Sertoli cell cytoplasm (including sloughed tissues) but were decreased in the body region, where aggregates of mitochondria were found. Cytoplasm near the cleavage site exhibited rarefaction, which was associated with swollen cisternae of endoplasmic reticulum. It appears that the mechanism of germ cell sloughing induced by MBC treatment involves the disruption of microtubules in the body region of the Sertoli cell, the retraction of cytoplasmic organelles and the swelling of endoplasmic reticulum.  相似文献   

8.
Failure of acrosome assembly in a male sterile mouse mutant   总被引:4,自引:0,他引:4  
Blind-sterile (bs) is a new autosomal recessive mutation of the mouse that causes sterility in males and bilenticular cataracts in both sexes. Sterile bs/bs males exhibited normal copulatory behavior, reduced testis weights, and few or no epididymal sperm. The effects of the bs mutation on spermatogenesis were examined by light and electron microscopy. All sperm present were morphologically abnormal with aberrant head shape. Adult bs/bs testes were characterized by germ cell depletion that resulted in profound alterations of the typical germ cell associations. Only 30% of the tubules contained relatively normal germ cell associations while 39% were extensively depleted, showing only Sertoli cells or Sertoli cells and spermatogonia. The most striking effect of the bs mutation on spermiogenesis was the failure of acrosome formation. Disorganized proacrosomic granules were detected up to step 3 of spermiogenesis by both periodic acid-Schiff staining and ultrastructural analysis. In over 3500 spermatids scored past steps 3-4 of spermiogenesis not a single acrosomal cap or fully developed acrosome was detected. Electron microscopy revealed a thickening of the nuclear envelope of elongating spermatids in the region where the acrosome should have been located; however, no acrosome was present. Chromatin condensation and nuclear elongation did occur in these acrosomeless spermatids, suggesting that caudal growth of the acrosome is not a mechanistic factor in these events.  相似文献   

9.
Round spermatids are post-meiotic cells with a haploid genome contained in a nucleus, with a structure initially similar to that of the somatic cell nucleus. During spermatogenesis, the spermatid nucleus undergoes drastic remodelling during which it first elongates and then condenses into the very specific and tightly packaged structure of the sperm nucleus. During this remodelling dthe histones are replaced by transition proteins, which, in turn, are replaced by protamines, the specific nuclear proteins of the spermatozoa. Immediately prior to their replacement, the histones are hyperacetylated. The first part of our work was to precisely characterise the changes in histone acetylation during murine spermatogenesis. We have shown that the core histones H2A, H2B, H3 and H4 are hyperacetylated in the elongating spermatids. We have also shown that these changes in acetylation are associated with degradation of the enzymes responsible for histone deacetylation, histone deacetylases or HDACs, while histone acetyl transferases are still present in these cells. The histone acetylation pattern was also investigated during human spermatogenesis, revealing that histone hyperacetylation in the nucleus of elongating spermatids, which appears to be conserved during the course of evolution, also occurs during human spermatogenesis. Moreover, our data obtained from the testes of men with severely altered spermatogenesis, including SCO syndromes (Sertoli Cells Only Syndromes), show that a global hyperacetylation of the Sertoli cell nuclei is associated with an absence of meiotic and post-meiotic cells. This suggests that the global histone acetylation variations observed during spermatogenesis are part of a signalling pathway involving germ cell — Sertoli cell communication. Altogether, these data provide a basis for a better understanding of the mechanisms and identification of the factors involved in post-meiotic remodelling of chromatin.  相似文献   

10.
Type I (α and β) interferons (IFNs) elicit antiproliferative and antiviral activities via the surface receptor IFNAR. Serendipitous observations in transgenic mice in 1988 strongly suggested that IFNα/β overexpression in the testis disrupts spermatogenesis. Here, we compare a new mouse strain transgenic for IFNβ (Tg10) and a sister strain lacking the IFNAR1 subunit of IFNAR (Tg10-Ifnar1(-/-)), both strains expressing the transgene in the testis. The main source of IFNβ RNA was the spermatid population. Importantly, the Tg10 mice, but not the double mutant Tg10-Ifnar1(-/-), showed altered spermatogenesis. The first IFNAR-dependent histological alteration was a higher apoptosis index in all germ cell categories apart from non-dividing spermatogonia. This occurred 3 weeks after the onset of IFNβ production at postnatal day 20 and in the absence of somatic cell defects in terms of cell number, expression of specific cell markers, and hormonal activities. Several known interferon-stimulated genes were up-regulated in Tg10 Sertoli cells and prepachytene germ cells but not in pachytene spermatocytes and spermatids. In concordance with this, pachytene spermatocytes and spermatids isolated from wild-type testes did not display measurable amounts of IFNAR1 and phosphorylated STAT1 upon IFNβ challenge in vitro, suggesting hyporesponsiveness of these cell types to IFN. At day 60, Tg10 males were sterile, and Sertoli cells showed increased amounts of anti-Mullerian hormone and decreased production of inhibin B, both probably attributable to the massive germ cell loss. Type I interferon signaling may lead to idiopathic infertilities by affecting the interplay between germ cells and Sertoli cells.  相似文献   

11.
In this study the cellular mechanisms of male sterility in F1 hybrids (BNF1) between BALB/c and wild-derived M.MUS-NJL (NJL) was investigated. Cell proliferation and differentiation in the sterile testis were examined by bromodeoxyuridine-labeling and use of germ cell stage-specific antibodies. In BNF1 testes, spermatogonia actively proliferated with a seminiferous epithelial cycle, and were retained in the basal layer of the tubules. However, preleptotene, leptotene and zygotene spermatocytes moved to the adluminal region. Immunohistological data with germ cell stage-specific antibodies indicated the presence of few, if any, pachytene spermatocytes in BNF1 testes. Thus, spermatogenesis seemed to be blocked at the zygotene stage. For examination of germ cell-Sertoli cell interactions, testes of aggregation chimeras between BNF1 and C3H/HeN were analyzed immunohistologically with C3H-specific antibody. Results showed that spermatogenesis of C3H-germ cells was normal, even when these cells in contact with BNF1-Sertoli cells. Differentiation of BNF1-germ cells progressed from zygotene to pachytene stage spermatocytes when these cells were surrounded by C3H-Sertoli cells, but never proceeded beyond the pachytene stage. These observations suggest that at least two different cellular factors may be involved in spermatogenesis, one acting in the germ cells and the other mediated by Sertoli cells. Furthermore, mating experiments revealed that the degree of spermatogenesis varied in different F1 hybrids, and that the major sterility factor was closely linked to the T -locus on chromosome 17.  相似文献   

12.
RA175/TSLC1/SynCAM/IGSF4A (RA175), a member of the immunoglobulin superfamily with Ca2+-independent homophilic trans-cell adhesion activity, participates in synaptic and epithelial cell junctions. To clarify the biological function of RA175, we disrupted the mouse Igsf4a (Ra175/Tslc1/SynCam/Igsf4a Ra175) gene. Male mice lacking both alleles of Ra175 (Ra175-/-) were infertile and showed oligo-astheno-teratozoospermia; almost no mature motile spermatozoa were found in the epididymis. Heterozygous males and females and homozygous null females were fertile and had no overt developmental defects. RA175 was mainly expressed on the cell junction of spermatocytes, elongating and elongated spermatids (steps 9 to 15) in wild-type testes; the RA175 expression was restricted to the distal site (tail side) but not to the proximal site (head side) in elongated spermatids. In Ra175-/- testes, elongated and mature spermatids (steps 13 to 16) were almost undetectable; round spermatids were morphologically normal, but elongating spermatids (steps 9 to 12) failed to mature further and to translocate to the adluminal surface. The remaining elongating spermatids at improper positions were finally phagocytosed by Sertoli cells. Furthermore, undifferentiated and abnormal spermatids exfoliated into the tubular lumen from adluminal surfaces. Thus, RA175-based cell junction is necessary for retaining elongating spermatids in the invagination of Sertoli cells for their maturation and translocation to the adluminal surface for timely release.  相似文献   

13.
The Sertoli cell ectoplasmic specialization is a unique junctional structure involved in the interaction between elongating spermatids and Sertoli cells. We have previously shown that suppression of testicular testosterone in adult rats by low-dose testosterone and estradiol (TE) treatment causes the premature detachment of step 8 round spermatids from the Sertoli cell. Because these detaching round spermatids would normally associate with the Sertoli cell via the ectoplasmic specialization, we hypothesized that ectoplasmic specializations would be absent in the seminiferous epithelium of TE-treated rats, and the lack of this junction would cause round spermatids to detach. In this study, we investigated Sertoli cell ectoplasmic specializations in normal and TE-treated rat testis using electron microscopy and localization of known ectoplasmic specialization-associated proteins (espin, actin, and vinculin) by immunocytochemistry and confocal microscopy. In TE-treated rats where round spermatid detachment was occurring, ectoplasmic specializations of normal morphology were observed opposite the remaining step 8 spermatids in the epithelium and, importantly, in the adluminal Sertoli cell cytoplasm during and after round spermatid detachment. When higher doses of testosterone were administered to promote the reattachment of all step 8 round spermatids, newly elongating spermatids associated with ectoplasmic specialization proteins within 2 days. We concluded that the Sertoli cell ectoplasmic specialization structure is qualitatively normal in TE-treated rats, and thus the absence of this structure is unlikely to be the cause of round spermatid detachment. We suggest that defects in adhesion molecules between round spermatids and Sertoli cells are likely to be involved in the testosterone-dependent detachment of round spermatids from the seminiferous epithelium.  相似文献   

14.
During spermatogenesis in sexually mature ground squirrels Leydig and Sertoli cells were morphologically well differentiated. For Leydig cells the most prominent organelles were lipid droplets, mitochondria with tubulo-vesicular cristae and abundant agranular reticulum organized as a mass of anastomosing tubules. These morphological criteria suggest that the Leydig cells were steroidogenically active. Sertoli cells exhibited a topographical distribution of certain organelles with basal regions containing stacks of granular reticulum, and large areas of agranular reticulum. The cytoplasm surrounding maturing germ cells contained numerous microtubules, and an adluminal layer of spermatids at a certain stage of spermiogenesis became enveloped by Sertoli cytoplasm containing an enormous proliferation of agranular reticulum. The presence of these organelles in Sertoli cells suggests that during spermatogenesis they are active in the synthesis of proteins and steroids. In particular the mass of agranular reticulum surrounding late stage spermatids indicates that steroids may be required for spermatid maturation and/or spermiation. By contrast Leydig and Sertoli cells observed during testicular regression, when only spermatogonia remain in the seminiferous tubules, had undergone structural changes. Leydig cells were still numerous and large with abundant agranular reticulum that was now organized as a loose assemblage of single unbranched tubules. Sertoli cells were drastically reduced in both cytoplasmic volume and content of organelles.  相似文献   

15.
Spermatogenic immunoglobulin superfamily (SgIGSF) is a mouse protein belonging to the immunoglobulin superfamily expressed in the spermatogenic cells of seminiferous tubules. We produced a specific polyclonal antibody against SgIGSF. Western blot analysis of the testes from postnatal developing mice using this antibody demonstrated multiple immunopositive bands of 80-130 kDa, which increased in number and size with the postnatal age. Enzymatic N-glycolysis caused reduction in the size of these bands to 70 kDa, indicating that SgIGSF is a glycoprotein and its glycosylation pattern and extent are developmentally regulated. Immunohistochemical analysis of the adult testis demonstrated that SgIGSF was present in the spermatogenic cells in the earlier steps of spermatogenesis and increased in amount from intermediate spermatogonia through zygotene spermatocytes but was diminished in the steps from early pachytene spermatocytes through round spermatids. After meiosis, SgIGSF reappeared in step 7 spermatids and was present in the elongating spermatids until spermiation. The immunoreactivity was localized primarily on the cell membrane. Consistent with the findings in adult testes, the analysis of the developing testes revealed that SgIGSF was expressed separately in the spermatogenic cells in earlier and later phases. Sertoli cells had no expression of SgIGSF, whereas both SgIGSF immunoprecipitated from the testis lysate and produced in COS-7 cells was shown to bind to the surface of Sertoli cells in primary culture. These results suggested that SgIGSF on the surface of spermatogenic cells binds to some membrane molecules on Sertoli cells in a heterophilic manner and thereby may play diverse roles in the spermatogenesis.  相似文献   

16.
Testis structure in the sys (symplastic spermatids) mouse.   总被引:1,自引:0,他引:1  
Testes of mice with the recessive insertional mutation termed symplastic spermatids (sys) were assessed for structural and developmental abnormalities. Homozygous (sys/sys) males are infertile due to an abnormality in spermatogenesis leading to azoospermia. The major interruption to spermatogenesis occurs when the intercellular bridges that connect round spermatids open prematurely resulting in the formation of symplasts. Symplasts contain as many as 285 nuclei. Development of spermatids within symplasts is arrested just before, or just after, elongation of the spermatid nuclei begins. Symplasts degenerate and appear to be phagocytized by Sertoli cells and by intratubular macrophages. In addition, degeneration of young round spermatids and also spermatocytes occasionally is observed. Spermatocyte degeneration is substantial in some tubules and leaves them depleted of cells other than basal compartment cells. Sertoli cell abnormalities are prominent and include intracellular vacuolation, absence of apical processes surrounding round spermatids, degeneration, and occasional sloughing. Although reduplication and infolding of the basal lamina is also seen, this does not appear as a common phenomenon. The sys phenotype is first manifest in animals between 19 days and 22 days of age. Considerable variability is seen in testis histology of prepubertal animals; some display degenerating pachytene spermatocytes and virtually no Sertoli cell vacuoles, while others display vacuoles without apparent elevated numbers of degenerating spermatocytes. Although this study has not revealed the primary cell type(s) affected by the insertional inactivation event, it is possible that the abnormalities in the Sertoli cells are responsible for germ cell degeneration as it is generally recognized that deficits in the Sertoli cell can result in major germ cell abnormalities but not vice versa.  相似文献   

17.
The sex-determining region of Chr Y (Sry) gene is sufficient to induce testis formation and the subsequent male development of internal and external genitalia in chromosomally female mice and humans. In XX sex-reversed males, such as XX/Sry-transgenic (XX/Sry) mice, however, testicular germ cells always disappear soon after birth because of germ cell-autonomous defects. Therefore, it remains unclear whether or not Sry alone is sufficient to induce a fully functional testicular soma capable of supporting complete spermatogenesis in the XX body. Here, we demonstrate that the testicular somatic environment of XX/Sry males is defective in supporting the later phases of spermatogenesis. Spermatogonial transplantation analyses using XX/Sry male mice revealed that donor XY spermatogonia are capable of proliferating, of entering meiosis and of differentiating to the round-spermatid stage. XY-donor-derived round spermatids, however, were frequently detached from the XX/Sry seminiferous epithelia and underwent cell death, resulting in severe deficiency of elongated spermatid stages. By contrast, immature XY seminiferous tubule segments transplanted under XX/Sry testis capsules clearly displayed proper differentiation into elongated spermatids in the transplanted XY-donor tubules. Microarray analysis of seminiferous tubules isolated from XX/Sry testes confirmed the missing expression of several Y-linked genes and the alterations in the expression profile of genes associated with spermiogenesis. Therefore, our findings indicate dysfunction of the somatic tubule components, probably Sertoli cells, of XX/Sry testes, highlighting the idea that Sry alone is insufficient to induce a fully functional Sertoli cell in XX mice.  相似文献   

18.
19.
During spermatogenesis in mammalian testes, junction restructuring takes place at the Sertoli–Sertoli and Sertoli–germ cell interface, which is coupled with germ cell development, such as cell cycle progression, and translocation of the germ cell within the seminiferous epithelium. In the rat testis, restructuring of the blood–testis barrier (BTB) formed between Sertoli cells near the basement membrane and disruption of the apical ectoplasmic specialization (apical ES) between Sertoli cells and fully developed spermatids (spermatozoa) at the luminal edge of the seminiferous epithelium occur concurrently at stage VIII of the seminiferous epithelial cycle of spermatogenesis. These two processes are essential for the translocation of primary spermatocytes from the basal to the apical compartment to prepare for meiosis, and the release of spermatozoa into the lumen of the seminiferous epithelium at spermiation, respectively. Cytokines, such as TNFα and TGFβ3, are present at high levels in the microenvironment of the epithelium at this stage of the epithelial cycle. Since these cytokines were shown to disrupt the BTB integrity and germ cell adhesion, it was proposed that some cytokines released from germ cells, particularly primary spermatocytes, and Sertoli cells, would induce restructuring of the BTB and apical ES at stage VIII of the seminiferous epithelial cycle. In this review, the intricate role of cytokines and testosterone to regulate the transit of primary spermatocytes at the BTB and spermiation will be discussed. Possible regulators that mediate cytokine-induced junction restructuring, including gap junction and extracellular matrix, and the role of testosterone on junction dynamics in the testis will also be discussed.  相似文献   

20.
Apoptosis plays an important role in controlling germ cell numbers and restricting abnormal cell proliferation during spermatogenesis. The tumor suppressor protein, p53, is highly expressed in the testis, and is known to be involved in apoptosis, which suggests that it is one of the major causes of germ cell loss in the testis. Mice that are c-kit/SCF mutant (Sl/Sld) and cryptorchid show similar testicular phenotypes; they carry undifferentiated spermatogonia and Sertoli cells in their seminiferous tubules. To investigate the role of p53-dependent apoptosis in infertile testes, we transplanted p53-deficient spermatogonia that were labeled with enhanced green fluorescence protein into cryptorchid and Sl/Sld testes. In cryptorchid testes, transplanted p53-deficient spermatogonia differentiated into spermatocytes, but not into haploid spermatids. In contrast, no differentiated germ cells were observed in Sl/Sld mutant testes. These results indicate that the mechanism of germ cell loss in the c-kit/SCF mutant is not dependent on p53, whereas the apoptotic mechanism in the cryptorchid testis is quite different (i.e., although the early stage of differentiation of spermatogonia and the meiotic prophase is dependent on p53-mediated apoptosis, the later stage of spermatids is not).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号