首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple method is presented for obtaining a large number of monospores in the thallus of Porphyra yezoensis. The method implies two principles: induction of monosporangium formation by allantoin, and liberation of monospores from the cell wall by mild homogenization. The induction of monosporangium formation was accomplished by culturing wild thalli in nutrient-enriched seawater with 10 mM of allantoin for approximately 3 weeks. This high concentration (10 mM) of allantoin suppressed the growth of the thalli compared with lower concentrations (0–1 mM). Thalli cultured for 3 weeks were mildly homogenized with a glass homogenizer and the monospore solution was obtained by filtering with a nylon mesh. The monospores grew normally to thalli. This technique of monospore acquisition is a simple and useful method for the propagation and breeding of P. yezoensis thalli.  相似文献   

2.
A method has been devised which allows the rapid production of fine suspension cultures of small aggregate size from suspension cultures of large average aggregate size, such as those of Capsicum frutescens. The method, which uses a Waring blender for aseptic homogenisation of cultures, has also been shown to be effective in rapidly producing suspension cultures from callus cultures. The suspension cultures so produced are particularly useful for immobilisation, such as in porous polyurethane foam matrices.  相似文献   

3.
The potential of using short-chain fatty acids and -keto-acid as precursors for the production of typical fruit-type aroma compounds by strawberry cell suspension cultures was investigated. Analysis of the headspace by gas chromatography revealed that supplemented strawberry cell suspension cultures were capable of producing low concentrations of ethyl butyrate and butyl butyrate, and converting -ketovalerate to butanal and butanol. No aroma compounds were produced in unsupplemented or heat-treated cell suspension cultures. The results indicated that esterase, decarboxylase, and alcohol dehydrogenase might exist in strawberry cell cultures. Increasing temperature, illumination and addition of mannitol favoured the production of butyl butyrate. No difference was found between one- and two-week-old cultures in the ability to convert precursors to corresponding aroma compounds.  相似文献   

4.
Airlift bioreactor operations have been studied for the growth-associated production of secondary metabolites from plant cell suspension cultures. The model system used in this work was Thalictrum rugosum producing berberine, an isoquinoline alkaloid. The airlift system was well suited for growth of Thalictrum cell suspension cultures unless the cell density was high. At high cell density, the airlift system with a draught tube was not adequate due to large aggregates clogging the recirculation paths. This was overcome by use of a cell scraper in the reactor. For berberine production, gas-stripping also played a significant role and it was discovered that CO(2) and ethylene were important for product formation. By supplying a mixture of CO(2) and ethylene into the airlift system, the specific berberine content was increased twofold. It is evident that continuous gas sparging was harmful for the production of berberine without supplementation with other gases.  相似文献   

5.
More and more plant cell suspension cultures are regarded as an attractive alternative to mammalian cells as host organism for production of complex recombinant proteins. The most important advantages of the production platform are low costs, easy scalability and enhanced safety by complete lack of animal components in the cultivation media. In order to characterize, understand and control such systems accurately, it is important to determine the cell-specific productivity (Qp) of plant cell-based production platforms. Compared to many microbial and mammalian cells the morphology of plant cells is nonhomogeneous and the cells tend to form aggregates, therefore commercial cell counting systems are too unreliable to determine cell numbers in plant suspension cultures. We addressed this limitation by developing a novel cell counting method based on a combination of cell-staining and automated confocal fluorescence microscopy. This method allowed us, for the first time, to determine the cell-specific productivity of transgenic tobacco (Nicotiana tabacum cv. Bright Yellow-2) cell suspension cultures producing the human antibody M12. In the future this method will be a useful tool in the development of optimized plant cell-based production processes.  相似文献   

6.
Acinetospora crinita from the Mediterranean Sea has been studied in laboratory cultures. The plants formed monospores and unilocular sporangia. Both monospores and zoids from unilocular sporangia developed to new plants with the same habitus and chromosome number (average ca 47). This indicates that meiosis in unilocular sporangia fails, and that sexuality has been lost in the cultures studied. It is concluded that loss of sexuality is the cause of the great variability and establishment of distinct geographically isolated populations in the genusAcinetospora.  相似文献   

7.
Cell suspension cultures are useful for a wide range of biochemical and physiological studies, yet their production can be technically demanding and often unreliable. Here we describe a protocol for producing Arabidopsis cell suspension cultures that is reliable and easy to use.  相似文献   

8.
Plant suspension cell cultures are emerging as an alternative to mammalian cells for production of complex recombinant proteins. Plant cell cultures provide low production cost, intrinsic safety and adherence to current regulations, but low yields and costly purification technology hinder their commercialization. Fungal hydrophobins have been utilized as fusion tags to improve yields and facilitate efficient low‐cost purification by surfactant‐based aqueous two‐phase separation (ATPS) in plant, fungal and insect cells. In this work, we report the utilization of hydrophobin fusion technology in tobacco bright yellow 2 (BY‐2) suspension cell platform and the establishment of pilot‐scale propagation and downstream processing including first‐step purification by ATPS. Green fluorescent protein‐hydrophobin fusion (GFP‐HFBI) induced the formation of protein bodies in tobacco suspension cells, thus encapsulating the fusion protein into discrete compartments. Cultivation of the BY‐2 suspension cells was scaled up in standard stirred tank bioreactors up to 600 L production volume, with no apparent change in growth kinetics. Subsequently, ATPS was applied to selectively capture the GFP‐HFBI product from crude cell lysate, resulting in threefold concentration, good purity and up to 60% recovery. The ATPS was scaled up to 20 L volume, without loss off efficiency. This study provides the first proof of concept for large‐scale hydrophobin‐assisted production of recombinant proteins in tobacco BY‐2 cell suspensions.  相似文献   

9.
The dependence of vegetative propagation on the production of individual plants was examined inDisporum smilacinum A. Gray on the basis of shading experiments and field surveys. This species typically showed four types of reproductive behavior: sterile plants producing one plantlet (no propagation), sterile plants producing more than two plantlets (vegetative propagation), fertile plants producing one plantlet (sexual reproduction) and fertile plants producing more than two plantlets (both sexual reproduction and vegetative propagation). The propagation ofD. smilacinum was clearly related to the annual net production of each individual plant. The probability of a mother plant producing more than two vegetative propagules (plantlets) increased with net production of the plant in the current year. The number of propagules per plant and runner length increased with net production. It was possible to explain the types of reproductive behavior of this species on the basis of both the initial plant size before sprouting and its net production during the growing season. There was a critical initial plant size for sexual reproduction and a critical level of production for vegetative propagation.  相似文献   

10.
A fluorinated analogue of coniferyl alcohol has been reported to be a specific inhibitor of oxidases involved in the biosynthesis of lignin. The Z isomer of beta-fluoro-coniferyl alcohol was synthesized and used for the preparation of dehydrogenation polymers (DHPs) and was also tested on lignin producing suspension cultures of spruce (Picea abies (L.) Karst.). The growth of the cells or the production of lignin by the suspension cultures was not significantly affected by the addition of fluoroconiferyl alcohol. This analogue did not form polymers quite as easily as did coniferyl alcohol in oxidation with hydrogen peroxide and horseradish peroxidase. In both cases the beta-fluoroconiferyl alcohol became incorporated in the polymeric product. We were unable to detect any specific inhibition of peroxidase activity, which is at variance with earlier reports of pronounced inhibition of lignin biosynthesis in poplar plantlets by fluoroconiferin, a potential inhibitor of oxidases involved in lignin biosynthesis.  相似文献   

11.
Effects of elicitation with heavy metals such as copper, cadmium, chromium (abiotic elicitation) and supplementation of CaCl2 on production of dipyranocoumarins (inophyllums) in suspension cultures of leaf and stem callus of Calophyllum inophyllum were studied. The optimum timing for elicitor introduction was found to be the 10th day after initiating the suspension cultures. Cadmium as abiotic elicitor in suspension cultures of stem callus was found best to elicit maximum production of inophyllums A, C, and calophyllolide while cadmium in suspension cultures of leaf callus was found best for eliciting maximum production of inophyllums B and P. Inophyllum D was the only dipyranocoumarin whose highest production was achieved when 1.0 mM chromium was used as abiotic elicitor in suspension cultures of stem callus. Out of the three abiotic elicitors used, none could result biomass growth. Only incorporation of CaCl2 in suspension cultures resulted biomass growth. A maximum of 35.26-fold biomass growth was achieved when suspension cultures of stem callus were incorporated with 2.0 mM CaCl2. CaCl2 was noted to have no positive influence on production of most of the dipyranocoumarins under study.  相似文献   

12.
Microcarriers are suitable for high-density cultures of cells requiring surface attachment and also offer the advantage of easy media removal for product recovery. We have used the macroporous microcarriers Cytopore 1 and 2 for the growth of CHO cells producing recombinant human beta-interferon (beta-IFN) in stirred batch cultures. Although these cells may grow in suspension, in the presence of Cytopore microcarriers they become entrapped in the inner bead matrix where they can be maintained at high densities. Cell growth rates were reduced in microcarrier cultures compared to suspension cultures. However, the beta-IFN yield was up to 3-fold greater as a result of an almost 5-fold higher specific productivity. Maximum productivity was found in cultures containing 1.0 mg/mL of Cytopore 1 or 0.5 mg/mL of Cytopore 2 with a cell/bead ratio of 1029 and 822, respectively. Beta-IFN molecules aggregated in the later stages of all cultures, causing a decrease in response by ELISA. However, the degree of aggregation was significantly less in the microcarrier cultures. The N-linked glycans from beta-IFN were isolated and analyzed by normal phase HPLC. There was no apparent difference in the profile of glycans obtained from each of the suspension and Cytopore culture systems. This suggests that Cytopore microcarriers may be useful in bioprocess development for enhanced recombinant glycoprotein production without affecting the glycosylation profile of the protein.  相似文献   

13.
The possibility of producing useful chemicals by plant cell cultures has been studied intensively for the past 30 years. However, problems associated with low product yields and culture instabilities have restricted wider industrial application of plant cell culture. The employment of hairy root culture technology, developed in the past 10 years, offers new opportunities for in vitro production of plant secondary metabolites. In contrast to cell suspension cultures, hairy root cultures are characterized by high biosynthetic capacity and genetic as well as biochemical stability. In this review, the establishment and cultivation of hairy root cultures as well as their properties and application for production of secondary metabolites are discussed.  相似文献   

14.
Human lactoferrin (hLf) is an iron-binding glycoprotein that has been considered to play many biological roles in the human, including the stimulation of the immune system, antimicrobial and anti-inflammatory effects, and regulation of iron absorption. We generated transgenic Siberian ginseng (Acanthopanax senticosus) cell cultures producing a functional hLf protein using the signal peptide sequence from the endoplasmic reticulum and driven by an oxidative stress-inducibleSWPA2 promoter which is highly expressed in plant cell cultures. The production of hLf increased proportionally to cell growth and showed a maximal level (up to 3.6% of total soluble protein) at the stationary phase in suspension cultures. Full-length hLf protein was identified by immunoblot analysis in transgenic cell cultures of Siberian ginseng. Recombinant hLf (rhLf) was purified from suspension cells of Siberian ginseng by ammonium sulfate precipitation, cation-exchange and gel filtration chromatography. N-terminal sequences of rhLf were identical to native hLf (nhLf). The overall monosaccharide composition of rhLf showed the presence of plant specific xylose while sialic acid is absent. Antibacterial activity of purified rhLf was higher than that of nhLf. Taken together, we anticipate that medicinal Siberian ginseng cultured cells, as demonstrated by this study, will be a biotechnologically useful source for commercial production of functional hLf not requiring further purification.  相似文献   

15.
Switchgrass (Panicum virgatum L.) is a warm-season perennial grass that has received considerable attention as a potential dedicated biofuel and bioproduct feedstock. Genetic improvement of switchgrass is needed for better cellulosic ethanol production, especially to improve cellulose-to-lignin ratios. Cell suspension cultures offer an in vitro system for mutant selection, mass propagation, gene transfer, and cell biology. Toward this end, switchgrass cell suspension cultures were initiated from embryogenic callus obtained from genotype Alamo 2. They have been established and characterized with different cell type morphologies: sandy, fine milky, and ultrafine cultures. Characterization includes histological analysis using scanning electron microscopy, and utility using protoplast isolation. A high protoplast isolation rate of up to 106 protoplasts/1.0 g of cells was achieved for the fine milky culture, whereas only a few protoplasts were isolated for the sandy and ultrafine cultures. These results indicate that switchgrass cell suspension type sizably impacts the efficiency of protoplast isolation, suggesting its significance in other applications. The establishment of different switchgrass suspension culture cell types provides the opportunity to gain insights into the versatility of the system that would further augment switchgrass biology research.  相似文献   

16.
A Chinese hamster ovary (CHO) cell line, producing recombinant secreted human placental alkaline phosphatase (SEAP) was investigated under three different culture conditions (suspension cells, cells attached to Cytodex 3 and Cytopore 1 microcarriers) in a biphasic culture mode using a temperature shift to mild hypothermic conditions (33 °C) in a fed-batch bioreactor. The cell viability in both the suspension and the Cytodex 3 cultures was maintained for significantly longer periods under hypothermic conditions than in the single-temperature cultures, leading to higher integrated viable cell densities. For all culture conditions, the specific productivity of SEAP increased after the temperature reduction; the specific productivities of the microcarrier cultures increased approximately threefold while the specific productivity of the suspension culture increased nearly eightfold. The glucose and glutamine consumption rates and lactate and ammonia production rates were significantly lowered after the temperature reduction, as were the yields of lactate from glucose. However, the yield of ammonia from glutamine increased in response to the temperature shift.  相似文献   

17.
Abstract. Leaf sections (1 × 1 cm) from Chenopodium rubrum L. were floated on Murashige–Skoog medium at constant 20°C and 8800 Lux white fluorescent light. During a period of 4–6 days after inoculation the leaf tissue showed rapid growth and cell division in the mesophyll. Subsequently, after 4 days on a rotary shaker the leaf tissue completely disintegrated and released a great number of single cells into suspension. This procedure, which by-passes the callus culture stage, is well-suited to the rapid production of standardized cell suspension cultures.  相似文献   

18.
Cultures derived from domestic carrot (Daucus carota L.) inbreds were found to vary with respect to regeneration potential as measured by the production of somatic embryos in suspension cultures. A number of biochemical parameters previously reported to distinguish embryogenic from non-embryogenic cultures of other species were measured in these carrot cell lines. Ethylene production was found to be inversely related to regeneration potential. The cell line producing the greatest number of somatic embryos exhibited the lowest rate of ethylene biosynthesis, even when grown on 2, 4-D-containing maintenance medium. A specific isozyme of acid phosphatase was associated with embryogenic calli. Proteins visualized by SDS-PAGE did not discriminate between embryo-forming and proliferating calli in all inbreds.  相似文献   

19.
The effects of constant osmolarity, between 300 and500 mOsm/kg, on the metabolism of Chinese HamsterOvary (CHO) cells producing tissue plasminogenactivator (tPA) were compared between adhesion andsuspension cultures. In both suspension and adhesionculture, the specific rates of glucose consumption(G), lactate production (qL), and tPAproduction (qtPA) increased as osmolarityincreased, while these rates decreased when osmolaritywas higher than the respective critical levels. However, specific growth rate () decreased withincrease in osmolarity and this slope grew steeper inthe osmolarity range higher than the critical level. The decrease in in the adhesion culture was morerapid than that in the suspension culture. Thecritical osmolarity for adhesion culture (400 mOsm/kg)was lower than that for suspension culture (450 mOsm/kg). These results indicated that the adhesionculture was more sensitive to increase of osmolaritythan the suspension culture, while the specific ratesobtained from the adhesion cultures were in general1.5- to 3-fold higher than those obtained from thesuspension cultures. Cell volume increased asosmolarity increased in both the suspension andadhesion cultures, as reported previously forsuspension culture of hybridoma cells, but there wasno morphological change in the suspension culture. Incontrast, cell height decreased and cell adhesion areamarkedly increased as osmolarity increased in theadhesion culture. This morphological change inadhesion cultures may be one reason for the highersensitivity of adherent cells to the increase ofosmolarity than suspended cells.  相似文献   

20.
The effects of potassium ferrocyanide and EDTA on ethyl alcohol production from molasses by Saccharomyces cerevisiae were investigated on simulated batch pilotplant-scale conditions for alcoholic fermentation of molasses. Ethyl alcohol production was more sensitive to ferrocyanide than to EDTA. When ferrocyanide was introduced into the cultures at the time of inoculation, there was stimulation of ethyl alcohol production, with 261 ppm ferrocyanide producing the maximum effect, which was 3.0% more than in control cultures. When added during the propagation of the yeast, ferrocyanide depressed ethyl alcohol production by 4.0% maximum whereas EDTA stimulated ethyl alcohol production by 2.0%. Addition of ferrocyanide during the fermentation stage produced no significant effect on alcohol production, whereas over a wide range of EDTA concentration there was a steady increase in alcohol yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号