首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The present study is to investigate the antitumor, antioxidant and antibacterial potential of silver nanoparticles (Ag NPs) synthesized from a phenolic derivative 4-N-methyl benzoic acid, isolated from a medicinal plant (Memecylon umbellatum Burm F). The Bio-inspired nanoparticles (NPs) were analyzed by using UV–vis spectroscopy, FTIR, HRTEM, Zeta potential and XRD techniques. The UV–vis spectroscopy study at the band of 430 nm confirmed the nanoparticles formation. HRTEM report showed that the AgNPs synthesized were in the size range 7–23 nm. The harvested nanoparticles were subjected to anti-bacterial assay and a dose dependent inhibitory action was observed against the tested human pathogens. Among the tested bacteria, Acinetobacter baumannii was found to be highly sensitive to AgNPs (diameter of zone of inhibition was 31 mm). Further, the silver nanoparticles exhibited a good anti-tumor activity against the breast cancer cell line (MCF 7) with an IC50 value of 42.19 µg/mL. As the present study confirmed a good antibacterial, antioxidant and antitumor activity in the nanoparticles synthesized using 4-N-methyl benzoic acid derived from a medicinal plant, the product can be further tested to formulate a good lead compound for biomedical applications.  相似文献   

2.
The present study focused on the evaluation of antibacterial property of silver nanoparticles (AgNPs) synthesized using mango flower extract. The morphology of the synthesized AgNPs was observed under transmission electron microscopy and the particles have shown spherical shape in the range of 10–20 nm. X-ray powder diffraction analysis confirmed the crystalline nature of the AgNPs. The atomic percentage of the Ag element in the nanoparticles was about 7.58% which is greater than the other elements present in the sample. The AgNPs showed extensive lethal effect on both Gram-positive (Staphylococcus sp.) and Gram-negative (Klebsiella sp., Pantoea agglomerans, and Rahnella sp.) bacteria. The extensive lethal effect of AgNPs against clinically important pathogens demonstrated that the mango flower mediated AgNPs could be applied as potential antibacterial agent to control the bacterial population in the respective industries.  相似文献   

3.
Several attempts have been made for green synthesis of silver nanoparticles (AgNPs) using different plant extracts. Present study revealed that, antioxidant, antibacterial and cytotoxic AgNPs were synthesized using terpenes-rich extract (TRE) of environmentally notorious Lantana camara L. leaves. AgNPs were characterized by advanced techniques like UV–Visible and Infra red spectroscopy; XRD, SEM techniques as terpenes coated sphere shaped NPs with average diameter 425 nm. Further, on evaluation, AgNPs were found to exhibit dose – dependent antioxidant potential, good to moderate antibacterial activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa; and toxicity on Brine shrimp (A. salinanauplii) with LD50 value 514.50 µg/ml.  相似文献   

4.
The application of metal nanoparticles in modern society is growing, but there is insufficient data concerning their influence on reproductive processes and comparison of their biological activity. The present experiments aimed to compare the effects of silver and titanium dioxide nanoparticles (AgNPs and TiO2NPs) on ovarian granulosa cell functions. AgNPs and TiO2NPs were added to culture of porcine granulosa cells at doses 0, 0.01, 0.1, 1 or 10 μg/mL. The mRNAs for proliferating cell nuclear antigen (PCNA), cyclin B1, bax and caspase 3 were quantified by RT-PCR; release of progesterone was analyzed by ELISA. It was shown that both AgNPs and TiO2NPs significantly reduced all the measured parameters. ED50 of the inhibitory influence of AgNPs on the main ovarian cell parameters was higher than ED50 of TiO2NPs. The ability of AgNPs and TiO2NPs to suppress ovarian granulosa cell functions should be taken into account by their application.  相似文献   

5.
Numerous studies investigated the biosynthesis of silver nanoparticles (AgNPs); however, there is a large gap for the ideal time-consuming process and their cytotoxicity. Herein, for the first time, rapid AgNPs was synthesized in a short time span, using Piper betle leaf (PBL) extract by applying microwave exposure. PB-AgNPs antibacterial activity and cell compatibility were enhanced by capping with chitosan (CS@PB-AgNPs). The synthesized nanoparticles were characterized by bioanalytical techniques. PB-AgNPs expressed significant antibacterial activity against Gram-positive and Gram-negative bacterial pathogens, while hybrid CS@PB-AgNPs presented the enhanced bactericidal activity. In addition, PB-AgNPs exhibited IC50 value of 140 μg/mL against RAW 264.7 macrophages and 100 μg/mL against lung cancer cells while, CS capping reduced its toxicity at IC50 values of 400 μg/mL and 180 μg/mL respectively were affirmed by MTT, apoptosis and DNA damage detection. Overall it was demonstrated that CS capping could be a phenomenal finding to improve the biomedical potential of AgNPs.  相似文献   

6.
Green nanotechnology has acquired immense demand due to its cost-effective, eco-friendly and benevolent approach for the synthesis of nanoparticles. Among the biological methods, plants aid as a significant green resource for synthesizing nanoparticles that are safe and non-toxic for human use. In the present investigation, Silver nanoparticles (AgNPs) were synthesized using bulbs extract of Allium ampeloprasum under the influence of sunlight irradiation and characterized using different techniques. Distinct in-vitro assays were performed to test the antioxidant and anticandida potential of the synthesized AgNPs. Results suggested the efficient and rapid sunlight-driven synthesis of AgNPs using A. ampeloprasum extract. UV–Vis spectrum showed absorption peak at 446 nm which confirmed the formation of AgNPs. FTIR analysis suggested the presence of functional groups associated with flavonoids and sulfur compounds in A. ampeloprasum extract. The synthesized AgNPs showed Face Centred Cubic (FCC) structure with an average size of 35 nm. Spherical, quasi spherical, triangular and ellipsoidal morphology of the NPs were observed from the TEM micrograph. The synthesized AgNPs showed pronounced free radical scavenging potential for DPPH, ABTS?+ and H2O2 radicals. The anticandida potency of the synthesized AgNPs was observed as follows: C. albicans ≥ C. tropicalis ≥ C. glabrata ≥ C. parapsilosis ≥ C. krusei. Results showed that sunlight driven nanoparticle synthesis of AgNPs is rapid, facile and exhibit enhanced antioxidant and antifungal activity.  相似文献   

7.

The need for the development of new methods for the reduction or elimination of the infections and diseases caused by mosquitoes and bacteria is very vital. The biomedical applications of silver nanoparticles (AgNPs) synthesized from biological sources especially plant extracts had contributed greatly to the inhibition of several microbes due to the presence of some secondary metabolites found in them. The biological approach of AgNPs synthesis is ecofriendly compared with other methods of AgNPs synthesis. In this study, we investigated the efficiency of AgNPs synthesized using the leaf extract of Morinda citrifolia against selected vector mosquitoes and bacteria. The leaves of Morinda citrifolia obtained were air dried, pulverized, extracted, and mixed with silver nitrate to form AgNPs. The synthesized AgNPs were characterized by UV–Visible spectroscopy, Fourier transformed infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX). The mosquito repellency and antimicrobial activities of the synthesized AgNPs were determined using standard methods. The peak at 436.14 nm on the UV–Visible spectrum confirmed the formation of AgNPs. The TEM microgram confirmed the synthesis of a spheroidal shape AgNPs with particle sizes in the range of 15–40 nm and an average size of 28 nm. The peak at 3.5 keV on the EDX microgram further confirmed the formation of AgNPs. In addition, the impact of green-synthesized AgNPs on some vector mosquitoes and human pathogens revealed percentage repellency in the range of 17.65 to 60.00% and percentage inhibition zones ranging from 20 to 64% respectively. Our study was the first among other studies to ascertain that AgNPs synthesized using Morinda citrifolia leaf extract possess promising mosquito repellency and antibacterial efficiency.

  相似文献   

8.
Abstract

The antimicrobial property of stabilized silver nanoparticles (AgNPs) with phospholipid membrane was investigated on both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial strains. The influence of phospholipid concentrations on antibacterial kinetics actions of AgNPs was studied with two different methodologies in order to understand the bactericidal and bacteriostatic effects. The bacterial inactivation of synthesized AgNPs fitted well to the Chick-Watson model with a high regression coefficient, R2 > 0.91. The antibacterial properties of AgNPs depend on the particle size, stabilizer and lecithin concentrations. Only the stabilized AgNPs that have the Klec/Ag values of 1 and 2 presented the inhabitation zone, while unstabilized AgNPs agglomerated quickly, settled on the wells and did not diffuse in agar. In addition, the specific coefficient of lethality depends on the lecithin concentration. An increase in lecithin concentration caused multilayer creation on the AgNPs' surface and reduced the release of AgNPs which led to low bacterial killing rate.  相似文献   

9.
BackgroundTherapeutic options against Multi Drug Resistant (MDR) pathogens are limited and the overall strategy would be the development of adjuvants able to enhance the activity of therapeutically available antibiotics. Non-specific outer membrane permeabilizer, like metal-oxide nanoparticles, can be used to increase the activity of antibiotics in drug-resistant pathogens. The study aims to investigate the effect of cerium oxide nanoparticles (CeO2 NPs) on bacterial outer membrane permeability and their application in increasing the antibacterial activity of antibiotics against MDR pathogens.MethodsThe ability of CeO2 NPs to permeabilize Gram-negative bacterial outer membrane was investigated by calcein-loaded liposomes. The extent of the damage was evaluated using lipid vesicles loaded with FITC-dextran probes. The effect on bacterial outer membrane was evaluated by measuring the coefficient of permeability at increasing concentrations of CeO2 NPs. The interaction between CeO2 NPs and beta-lactams was evaluated by chequerboard assay against a Klebsiella pneumoniae clinical isolate expressing high levels of resistance against those antibiotics.ResultsCalcein leakage increases as NPs concentrations increase while no leakage was observed in FITC-dextran loaded liposomes. In Escherichia coli the outer membrane permeability coefficient increases in presence of CeO2 NPs. The antibacterial activity of beta-lactam antibiotics against K. pneumoniae was enhanced when combined with NPs.ConclusionsCeO2 NPs increases the effectiveness of antimicrobials which activity is compromised by drug resistance mechanisms. The synergistic effect is the result of the interaction of NPs with the bacterial outer membrane. The low toxicity of CeO2 NPs makes them attractive as antibiotic adjuvants against MDR pathogens.  相似文献   

10.
The plant Cassia angustifolia belongs to Saudi Arabia, which is one of the native places and now cultured throughout the global countries. Medical care in the Arab world is an essential outlet for medicinal plants, both because they are crucial elements for prophetic medicine and due to their lengthy background in the Middle East. C.angustifolia is one of the medicinal plants used in the Saudi Arabia. The usage of plant extracts for synthesizing nanoparticles is conducive to other biological material, since it avoids the lengthy phase of cell culture maintenance. Silver nanoparticles attract further attention due to their strong conductivity, stability and antimicrobial activity across different metal nanoparticles. The present study was designed in the Saudi C. angustifolia leaves with the zinc synthesis of nanoparticles and its antibacterial ability. The plant extracts of C. angustifolia was used for synthesis of zinc nanoparticles, antimicrobial activities against bacterial strains have been tested along with transmission electron microscope (TEM), UV spectroscopy and antimicrobial activities have been conducted. This study showed that silver ions may be transferred from the plant extract to silver nanoparticles. AgNPs biogenic capacity to antibacterial with lovo cell with IC50 ranged from 33.5 ± 0.2 μg/mL demonstrated strong antibacterial capacity to antibody. The overall absorption value for the extract was between 420 and 440 nm and the color transition to green was the plasma absorption of the AgNPs. TEM results was showed in 200,000 magnification. The uniqueness of the current study is that Cassia angustifolia leaf extract from Saudi Arabia was used to prepare the metallic nanoparticles. Additionally, ZnCl2 may also be used as nanoparticles of mineral salt and zinc, which, since their application has been confirmed, are antimicrobial.  相似文献   

11.
Due to drug addiction and the emergence of antibiotic resistance in pathogens, the disease load and medication intake have risen worldwide. The alternative treatment for drug-resistant infections is Nano formulation-based antimicrobial agents. The plant extract of Conocarpus Lancifolius fruits was used to synthesize silver nanoparticles in the current study, and it was further employed as an antimicrobial and anticancer agent. Nanoparticles have been characterized by UV–visible spectrometer revealed the notable peak of λmax = 410–442 nm, which confirms the reduction of silver ion to elemental silver nanoparticles, and the biological moieties in the synthesis were further confirmed by FTIR analysis. The stability and crystalline nature of materials were approved by XRD analysis and expected the size of the nanomaterials of 21 to 173 nm analyzed by a nanophox particle-size analyzer. In vitro, synthesized materials act as an antibacterial agent against Streptococcus pneumonia and Staphylococcus aureus. The inhibition zones of 18 and 24 mm have been estimated to be antibacterial activity against both bacteria. The potency of up to 100% of AgNPs for bacterial strains was incubated overnight at 60 μg/ml. Based on our results, biogenic AgNPs reveal significant activity against fungal pathogen Rhizopusus stolonifera and Aspergillus flavus that cause leading infectious diseases. Additionally, nanomaterials were biocompatible and demonstrated the potential anticancer activities against MDA MB-231 cells after 24-hour exposure.  相似文献   

12.
In green chemistry, the application of a biogenic material as a mediator in nanoparticles formation is an innovative nanotechnology. Our current investigation aimed at testing the cytotoxic potential and antimicrobial ability of silver nanoparticles (AgNPs) that were prepared using Calligonum comosum roots and Azadirachta indica leaf extracts as stabilizing and reducing agents. An agar well diffusion technique was employed to detect synthesized AgNPs antibacterial ability on Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus bacterial strains. Furthermore, their cytotoxic capability against LoVo, MDA-MB231 and HepG2 ca cells was investigated. For phyto-chemical detection in the biogenic AgNPs the Fourier-transform infrared spectroscopy (FT-IR) was considered. Zeta sizer, TEM (Transmission Electron Microscope) and FE-SEM (Field Emission Scanning Electron Microscope) were used to detect biogenic AgNPs’ size and morphology. The current results showed the capability of tested plant extract for conversion of Ag ions to AgNPs with a mean size ranging between 90.8 ± 0.8 and 183.2 ± 0.7 nm in diameter. Furthermore, prepared AgNPs exhibited apoptotic potential against HepG2, LoVo, and MDA-MB 231cell with IC50 ranging between 10.9 and 21.4 μg/ml and antibacterial ability in the range of 16.0 ± 0.1 to 22.0 ± 1.8 mm diameter. Activation of caspases in AgNPs treated cells could be the main indicator for their positive effect causing apoptosis. The current investigation suggested that the green production of AgNPs could be a suitable substitute to large-scale production of AgNPs, since stable and active nanoparticles could be obtained.  相似文献   

13.
Green synthesis method using camomile extract was applied to synthesize silver nanoparticles to tune their antibacterial properties merging the synergistic effect of camomile and Ag. Scanning transmission electron microscopy revealed that camomile extract (CE) consisted of porous globular nanometer sized structures, which were a perfect support for Ag nanoparticles. The Ag nanoparticles synthesized with the camomile extract (AgNPs/CE) of 7 nm average sizes, were uniformly distributed on the CE support, contrary to the pure Ag nanoparticles synthesized with glucose (AgNPs/G), which were over 50 nm in diameter and strongly agglomerated. The energy dispersive X-ray spectroscopy chemical analysis showed that camomile terpenoids act as a capping and reducing agent being adsorbed on the surface of AgNPs/CE enabling their reduction from Ag+ and preventing them from agglomeration. Fourier transform infrared and ultraviolet–visible spectroscopy measurements confirmed these findings, as the spectra of AgNPs/CE, compared to pure CE, did not contain the 1109 cm?1 band, corresponding to –C–O groups of terpenoids and the peaks at 280 and 320 nm, respectively. Antibacterial tests using four bacteria strains showed that the AgNPs/CE performed five times better compared to CE AgNPs/G samples, reducing totally all the bacteria in 2 h.  相似文献   

14.
Abstract

Biosynthesis of metal nanoparticles is an area of interest among researchers because of its eco-friendly approach. Current study focuses at biosynthesis of silver nanoparticles (AgNPs) and optimization of physico-chemical conditions to obtain mono-dispersed and stable AgNPs having antimicrobial activity. Initially Bacillus mojavensis BTCB15 produced silver nanoparticles (AgNPs) of 105?nm. Silver nanoparticles (AgNPs) were characterized by particle size analyzer, UV-Vis Spectroscopy, Fourier transforms infrared spectroscopy (FTIR), Atomic force microscopy (AFM), and X-ray diffraction (XRD). Whereas, under optimal conditions of temperature 55?°C, pH 8, addition of surfactant Tween 20, and metal ion K2SO4, about 104% size reduction was achieved with average size of 2.3nm. Molecular characterization revealed 98% sequence homology with Bacillus mojavensis. AgNPs exhibited antibacterial activity at concentrations ranging from 0.5 to 2.5?µg/µl against Escherichia coli BTCB03, Klebsiella pneumonia BTCB04, Acinetobacter sp. BTCB05, and Pseudomonas aeruginosa BTCB01 but none against Staphylococcus aureus BTCB02. Highest antibacterial activity was observed at 0.27?µg/µl and lowest at 0.05?µg/µl of AgNPs indicated by zone of inhibition. Conclusively, under optimum conditions, Bacillus mojavensis BTCB15 was able to produce AgNPs of 2.3?nm size and had antibacterial activity against multi drug resistant pathogens.  相似文献   

15.
The target of our current work was designed to prepare titanium oxide doped silver nanoparticles (Ag/TiO2NPs) and their impact on the functionalization of cotton fabrics. Additionally, the effect of Ag/TiO2NPs was compared with the individually prepared silver nanoparticles (AgNPs) and titanium oxide nanoparticles (TiO2NPs). In this work, AgNPs were prepared in the solid state using arabic gum as efficient stabilizing and reducing agent. Then, two concentrations of the as-synthesized nanoparticles were used to functionalize the cotton fabrics by pad-dry-cure treatment in the presence of fixing agent to increase the durability of treated cotton fabrics against vigorous washing cycles. The findings implied that the as-prepared nanoparticles were successfully synthesized in nano-size with spherical shape and homogeneity. The efficacy of the functionalized cotton fabrics with those nanoparticles were evaluated in terms of multifunctional properties including antimicrobial and ultraviolet protection factor (UPF) and the mechanical features before and after many washing cycles; 10, 15 and 20 times. The resultant also proved that Ag/TiO2NPs-treated cotton fabrics exhibited the greater values of both antimicrobial and UPF properties with enhancement in the tensile strength and elongation features. Thus, the combination between these two nanoparticles through doping reaction is suitable for imparting superior antimicrobial properties against the four tested microbial species (Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger) and good UPF properties. Depending on the promising obtained results of the multi-finishing fabrics, these nanoparticles of Ag/TiO2NPs can be applied for the production of an efficient medical clothes for doctors, nurses and bed sheets for patients in order to kill and prevent the spread of bacteria and then, reduce the transmission of infection to others.  相似文献   

16.
In the present study, we synthesized silver and gold nanoparticles with a particle size of 10–20 nm, using Zingiber officinale root extract as a reducing and capping agent. Chloroauric acid (HAuCl4) and silver nitrate (AgNO3) were mixed with Z. officinale root extract for the production of silver (AgNPs) and gold nanoparticles (AuNPs). The surface plasmon absorbance spectra of AgNPs and AuNPs were observed at 436–531 nm, respectively. Optimum nanoparticle production was achieved at pH 8 and 9, 1 mM metal ion, a reaction temperature 50 °C and reaction time of 150–180 min for AgNPs and AuNPs, respectively. An energy-dispersive X-ray spectroscopy (SEM–EDS) study provides proof for the purity of AgNPs and AuNPs. Transmission electron microscopy images show the diameter of well-dispersed AgNPs (10–20 nm) and AuNPs (5–20 nm). The nanocrystalline phase of Ag and Au with FCC crystal structures have been confirmed by X-ray diffraction analysis. Fourier transform infrared spectroscopy analysis shows the respective peaks for the potential biomolecules in the ginger rhizome extract, which are responsible for the reduction in metal ions and synthesized AgNPs and AuNPs. In addition, the synthesized AgNPs showed a moderate antibacterial activity against bacterial food pathogens.  相似文献   

17.
The formation of bacterial biofilm is a major challenge in clinical applications. The main aim of this study is to describe the synthesis, characterization and biocidal potential of zinc oxide nanoparticles (NPs) against bacterial strain Pseudomonas aeruginosa. These nanoparticles were synthesized via soft chemical solution process in a very short time and their structural properties have been investigated in detail by using X-ray diffraction and transmission electron microscopy measurements. In this work, the potential of synthesized ZnO-NPs (∼10–15 nm) has been assessed in-vitro inhibition of bacteria and the formation of their biofilms was observed using the tissue culture plate assays. The crystal violet staining on biofilm formation and its optical density revealed the effect on biofilm inhibition. The NPs at a concentration of 100 µg/mL significantly inhibited the growth of bacteria and biofilm formation. The biofilm inhibition by ZnO-NPs was also confirmed via bio-transmission electron microscopy (Bio-TEM). The Bio-TEM analysis of ZnO-NPs treated bacteria confirmed the deformation and damage of cells. The bacterial growth in presence of NPs concluded the bactericidal ability of NPs in a concentration dependent manner. It has been speculated that the antibacterial activity of NPs as a surface coating material, could be a feasible approach for controlling the pathogens. Additionally, the obtained bacterial solution data is also in agreement with the results from statistical analytical methods.  相似文献   

18.
The rare earth metal oxide nanoparticles such as gadolinium oxide nanoparticles (Gd2O3 NPs) have been synthesized by green synthesis process using methanolic extract of Moringa oleifera (M oleifera) peel. In this process, the Gd2O3 NPs formation was observed at 280–300 nm in UV–Vis spectroscopy. The XRD pattern of the synthesized Gd2O3 NPs was exactly matched with JCPDS No 3-065-3181which confirms the crystalline nature of Gd2O3 NPs. In addition, Energy-dispersive X-ray spectroscopy (EDX) analysis was stated that Gd and O elements were present as 70.31 and 29.69%, respectively in Gd2O3 NPs. The SEM and TEM analysis were said Gd2O3 NPs are in rod shape and 26 ± 2 nm in size. Further the synthesized Gd2O3 NPs were confirmed by X-ray photoemission spectroscopy (XPS). The synthesized Gd2O3 NPs were further examined for anti-fungal activity against Alternaria saloni (A saloni) and Sclerrotium rolfsii (S rolfsii) and it showed moderate activity. Also, Gd2O3 NPs evaluated as good antibacterial agent against different Gram +ve and Gram −ve bacteria. Moreover, the toxicity of the Gd2O3 NPs on red blood cells (RBCs) of the human blood was determined using hemolytic assay, the obtained results were stated the synthesized Gd2O3 NPs are nontoxic to the human erythrocytes. The photocatalytic activity against malachite green (MG) dye was tested and confirmed as 92% of dye was degraded within 2 hr by Gd2O3 NPs. The results were stated the green synthesized Gd2O3 NPs are good anti-fungal agents, nontoxic and we can use as a photocatalyst. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

19.
The aim of the present study was to investigate the anti-biofilm activity of biologically synthesized selenium nanoparticles (Se NPs) against the biofilm produced by clinically isolated bacterial strains compared to that of selenium dioxide. Thirty strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis were isolated from various specimens of the patients hospitalized in different hospitals (Kerman, Iran). Quantification of the biofilm using microtiter plate assay method introduced 30% of S. aureus, 13% of P. aeruginosa and 17% of P. mirabilis isolates as severely adherent strains. Transmission electron micrograph (TEM) of the purified Se NPs (produced by Bacillus sp. MSh-1) showed individual and spherical nano-structure in the size range of 80–220 nm. Obtained results of the biofilm formation revealed that selenium nanoparticles inhibited the biofilm of S. aureus, P. aeruginosa, and P. mirabilis by 42%, 34.3%, and 53.4%, respectively, compared to that of the non-treated samples. Effect of temperature and pH on the biofilm formation in the presence of Se NPs and SeO2 was also evaluated.  相似文献   

20.
The current research is to develop an easy and eco-friendly method for the synthesis of three different concentrations of silver nanoparticles (1mMCvAgNPs, 2mMCvAgNPs and 3mMCvAgNPs) using aqueous whole plant extract of Cleome viscosa and to evaluate their antibacterial, antioxidant and antidiabetic properties. CvAgNPs were characterized by Using UV–vis spectrophotometer, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscope (TEM). The formation of CvAgNPs was confirmed by the observation of band between 250 nm to 600 nm UV–vis spectrum. The crystalline structure of CvAgNPs with a face-centered cubic (FCC) was confirmed by XRD. The responsible phytochemicals for the reduction and capping material of CvAgNPs were observed with FT-IR. The SEM analysis confirmed the size and shapes of CvAgNPs. The CvAgNPs have shown the rich content of total phenolic and total flavonoid components. The CvAgNPs have shown significant antibacterial activity on multi drug resistance Gram-negative and Gram-positive bacteria and also have shown significant strong antioxidant activities (DPPH, ABTS, H2O2 scavenging, Phosphomolybdenum assay and reducing power). The inhibitory action of CvAgNPs on α-glucosidase and α-amylase was stronger than the inhibitory action of acarbose. To best of our knowledge, this is the first attempt on the synthesis of AgNPs using C. viscosa whole plant aqueous extract. The synthesized CvAgNPs exhibited good antimicrobial, antioxidant and antidiabetic properties. Hence, to validate our results, the in vivo studies at the molecular level are needed to develop Cleome viscosa as an antibacterial, antioxidant and anti-diabetic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号