首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

Present study recommends DBH as independent variable of the derived allometric models and Biomass = a + b DBH 2 has been selected for total above-ground biomass, nutrients and carbon stock.

Abstract

Kandelia candel (L.) Druce is a shrub to small tree of the Sundarbans mangrove forest of Bangladesh. The aim of the study was to derive the allometric models for estimating above-ground biomass, nutrient and carbon stock in K. candel. A total of eight linear models with 64 regression equations were tested to derive the allometric models for biomass of each part of plant; and nutrients and carbon stock in total above-ground biomass. The best fitted allometric models were selected by considering the values of R 2, CV, R mse, MSerror, S a, S b, F value, AICc and Furnival Index. The selected allometric models were Biomass = 0.014 DBH2 + 0.03; √Biomass = 0.29 DBH ? 0.21; √Biomass = 0.66 √DBH ? 0.57; √Biomass = 1.19 √DBH ? 1.02; Biomass = 0.21 DBH2 + 0.12 for leaves, branches, bark, stem without bark and total above-ground biomass, respectively. The selected allometric models for Nitrogen, Phosphorous, Potassium and Carbon stock in total above-ground biomass were N = 0.39 DBH2 + 0.49, P = 0.77 DBH2 + 0.14, K = 0.87 DBH2 + 0.07 and C = 0.09 DBH2 + 0.05, respectively. The derived allometric models have included DBH as a single independent variable, which may give quick and accurate estimation of the above-ground biomass, nutrient and carbon stock in this species. This information may also contribute to a broader study of nutrient cycling, nutrient budgeting and carbon sequestration of the studied forest.
  相似文献   

2.
3.

Key message

We investigated a Frankia Alnus sieboldiana symbiosis, including the minimum inoculum dose for constant nodulation, the period of time to nodulation after inoculation, and the effects of N on nodulation.

Abstract

Frankia is a nitrogen-fixing actinomycete that forms root nodules in some dicotyledonous plants, which are called actinorhizal. We studied nodule formation in Alnus sieboldiana, an actinorhizal plant, after inoculation with a Frankia isolate to establish techniques for Frankia inoculation and the cultivation of inoculated plants. Root nodules formed on seedlings of A. sieboldiana by 2 weeks after inoculation, and N2 fixation measured by acetylene reduction activity started 3 weeks after inoculation. Nodulation was observed after inoculation with a Frankia isolate at 0.001 μL packed cell volume (pcv). The number of nodules formed on the seedlings inoculated with Frankia at more than 0.05 μL pcv was not significantly different. Nodule development and N2 fixation were reduced when inoculated seedlings were treated weekly with 15 mM NH4NO3-N. In contrast, treatment with 3.75 or 0.9375 mM NH4NO3-N did not inhibit nodule development or N2 fixation of inoculated seedlings by 15 weeks of N treatment.
  相似文献   

4.
5.
Optimization of process parameters for phytase production by Enterobacter sp. ACSS led to a 4.6-fold improvement in submerged fermentation, which was enhanced further in fed-batch fermentation. The purified 62 kDa monomeric phytase was optimally active at pH 2.5 and 60 °C and retained activity over a wide range of temperature (40–80 °C) and pH (2.0–6.0) with a half-life of 11.3 min at 80 °C. The kinetic parameters K m, V max, K cat, and K cat/K m of the pure phytase were 0.21 mM, 131.58 nmol mg?1 s?1, 1.64 × 103 s?1, and 7.81 × 106 M?1 s?1, respectively. The enzyme was fairly stable in the presence of pepsin under physiological conditions. It was stimulated by Ca+2, Mg+2 and Mn+2, but inhibited by Zn+2, Cu+2, Fe+2, Pb+2, Ba+2 and surfactants. The enzyme can be applied in dephytinizing animal feeds, and the baking industry.  相似文献   

6.
Sublethal concentrations of chemical insecticides may cause changes in some behavioral characteristics of natural enemies such as functional responses. The residual effect of three synthetic insecticides including deltamethrin, fenvalerate and azadirachtin were studied on functional response of Habrobracon hebetor Say to Ephestia kuehniella Zeller larvae. Seven host densities (2, 4, 8, 16, 32, 64 and 96) were used during a 24 h period. The resulting data were appropriately fit to Type II functional response models in all treatments: (1) control (0.0916 h?1; and T h  = 0.2011 h); (2) deltamethrin (a = 0.0839 h?1; and T h  = 0.3560 h); (3) fenvalerate (a = 0.0808 h?1 and T h  = 0.3623 h); and (4) azadirachtin (a = 0.0900 h?1 and T h  = 0.2042 h). Maximum theoretical parasitism rate (T/T h ) was 119.34 estimated for control wasps. There was no significant difference between the values of attack rates (a and a + D a ) in all treatments while the handling time was statistically affected in female wasps treated with fenvalerate. Our findings will be useful in safe application of these insecticides in pest management programmes.  相似文献   

7.
In the present study, we explored the metabolic versatility of anaerobic ammonium oxidation (anammox) bacteria in a variety of Fe (III) concentrations. Specifically, we investigated the impacts of Fe (III) on anammox growth rates, on nitrogen removal performance, and on microbial community dynamics. The results from our short-term experiments revealed that Fe (III) concentrations (0.04–0.10 mM) significantly promote the specific anammox growth rate from 0.1343 to 0.1709 d?1. In the long-term experiments, the Anammox-anaerobic sequencing batch reactor (ASBR) was operated over 120 days and achieved maximum NH4 +-N, NO2 ?-N, and TN efficiencies of 90.98 ± 0.35, 93.78 ± 0.29, and 83.66 ± 0.46 %, respectively. Pearson’s correlation coefficients between anammox-(narG + napA), anammox-nrfA, and anammox-FeRB all exceeded r = 0.820 (p < 0.05), confirming an interaction and ecological association among the nitrogen and iron-cycling-related microbial communities. Illumina MiSeq sequencing indicated that Chloroflexi (34.39–39.31 %) was the most abundant phylum in an Anammox-ASBR system, followed by Planctomycetes (30.73–35.31 %), Proteobacteria (15.40–18.61 %), and Chlorobi (4.78–6.58 %). Furthermore, we found that higher Fe (III) supplementation (>0.06 mM) could result in the community succession of anammox species, in which Candidatus Brocadia and Candidatus Kuenenia were the dominant anammox bacteria species. Combined analyses indicated that the coupling of anammox, dissimilatory nitrogen reduction to ammonium, and iron reduction accounted for nitrogen loss in the Anammox-ASBR system. Overall, the knowledge gained in this study provides novel insights into the microbial community dynamics and metabolic potential of anammox bacteria under Fe (III) supplementation.  相似文献   

8.

Objectives

To identify a robust NADP+ dependent formate dehydrogenase from Lactobacillus buchneri NRRL B-30929 (LbFDH) with unique biochemical properties.

Results

A new NADP+ dependent formate dehydrogenase gene (fdh) was cloned from genomic DNA of L. buchneri NRRL B-30929. The recombinant construct was expressed in Escherichia coli BL21(DE3) with 6?×?histidine at the C-terminus and the purified protein obtained as a single band of approx. 44 kDa on SDS-PAGE and 90 kDa on native-PAGE. The LbFDH was highly active at acidic conditions (pH 4.8–6.2). Its optimum temperature was 60 °C and 50 °C with NADP+ and NAD+, respectively and its Tm value was 78 °C. Its activity did not decrease after incubation in a solution containing 20% of DMSO and acetonitrile for 6 h. The KM constants were 49.8, 0.12 and 1.68 mM for formate (with NADP+), NADP+ and NAD+, respectively.

Conclusions

An NADP+ dependent FDH from L. buchneri NRRL B-30929 was cloned, expressed and identified with its unusual characteristics. The LbFDH can be a promising candidate for NADPH regeneration through biocatalysis requiring acidic conditions and high temperatures.
  相似文献   

9.
10.
In this study, we analysed metagenomes along with biogeochemical profiles from Skagerrak (SK) and Bothnian Bay (BB) sediments, to trace the prevailing nitrogen pathways. NO3 ? was present in the top 5 cm below the sediment-water interface at both sites. NH4 + increased with depth below 5 cm where it overlapped with the NO3 ? zone. Steady-state modelling of NO3 ? and NH4 + porewater profiles indicates zones of net nitrogen species transformations. Bacterial protease and hydratase genes appeared to make up the bulk of total ammonification genes. Genes involved in ammonia oxidation (amo, hao), denitrification (nir, nor), dissimilatory NO3 ? reduction to NH4 + (nfr and otr) and in both of the latter two pathways (nar, nap) were also present. Results show ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) are similarly abundant in both sediments. Also, denitrification genes appeared more abundant than DNRA genes. 16S rRNA gene analysis showed that the relative abundance of the nitrifying group Nitrosopumilales and other groups involved in nitrification and denitrification (Nitrobacter, Nitrosomonas, Nitrospira, Nitrosococcus and Nitrosomonas) appeared less abundant in SK sediments compared to BB sediments. Beggiatoa and Thiothrix 16S rRNA genes were also present, suggesting chemolithoautotrophic NO3 ? reduction to NO2 ? or NH4 + as a possible pathway. Our results show the metabolic potential for ammonification, nitrification, DNRA and denitrification activities in North Sea and Baltic Sea sediments.  相似文献   

11.
Producing valuable coproducts from oleaginous microalgae is an option to reduce the total cost of biofuel production. Here, the influence of nitrogen sources on biomass yield and lipid accumulation of a newly identified oleaginous green microalgal strain, Mychonastes afer HSO-3-1, was evaluated. Carbon assimilation and the following lipid biosynthesis of M. afer were inhibited to some extent under weak acidic conditions (6 < pH < 7) and any of the tested nitrogen source. The highest lipid productivity of 50.7 mg L?1 day?1 was achieved with a 17.6 mM nitrogen supplement in the form of urea. The cell polar lipid content was significantly higher than triacylglycerol (TAG), and saturated palmitic acid (C16:0) occupied a dominant position in the fatty acid profiles while culturing M. afer in acidic medium with NH4 + as the nitrogen source. Under neutral conditions, the lipid productivities of M. afer cultivated in media containing 17.6 mM of NaNO3, NH4Cl, and NH4NO3 were 76.2, 77.5, and 79.0 mg L?1 day?1, respectively. The greatest TAG content (58.56%) of total lipids was obtained when NaNO3 was used as the nitrogen source. There was no significant difference in the fatty acid composition of M. afer cells when they were cultivated in neutral media supplemented with NaNO3, urea, NH4Cl, and NH4NO3. Therefore, NH4 + was not a suitable nitrogen source for M. afer cultivation due to the additional labor, working procedures, and alkali required to adjust the medium pH. Considering that using urea as nitrogen source could reduce the cost of nutrient salts substantially and urea can be taken up and utilized by most microalgae, it is a preferred nitrogen source. The major properties of biodiesel derived from M. afer HSO-3-1 met biodiesel quality, and nervonic acid concentrations remained at approximately 3.0% of total fatty acids.  相似文献   

12.
The biodegradation of furfuryl alcohol (FA) in shake flask experiments using a pure culture of Pseudomonas putida (MTCC 1194) and Pseudomonas aeruginosa (MTCC 1034) was studied at 30 °C and pH 7.0. Experiments were performed at different FA concentrations ranging from 50 to 500 mg/l. Before carrying out the biodegradation studies, the bacterial strains were acclimatized to the concentration of 500 mg/l of FA by gradually raising 100 mg/l of FA in each step. The well acclimatized culture of P. putida and P. aeruginosa degraded about 80 and 66% of 50 mg/l FA, respectively. At higher concentration of FA, the percentage of FA degradation decreased. The purpose of this study was to determine the kinetics of biodegradation of FA by measuring biomass growth rates and concentration of FA as a function of time. Substrate inhibition was calculated from experimental growth parameters using the Haldane equation. Data for P. putida were determined as µ max ?=?0.23 h?1, K s ?=?23.93 mg/l and K i ?=?217.1 mg/l and for P. aeruginosa were determined as µ max ?=?0.13 h?1, K s ?=?21.3 mg/l and K i ?=?284.9 mg/l. The experimental data were fitted in Haldane, Aiba and Edwards inhibition models.  相似文献   

13.
Bacillus thuringiensis (Berliner) bears essential characteristics in the control of insect pests, such as its unique mode of action, which confers specificity and selectivity. This study assessed cry gene contents from Bt strains and their entomotoxicity against Diatraea saccharalis (F.) and Diatraea flavipennella (Box) (Lepidoptera: Crambidae). Bioassays with Bt strains were performed against neonates to evaluate their lethal and sublethal activities and were further analyzed by PCR, using primers to identify toxin genes. For D. saccharalis and D. flavipennella, 16 and 18 strains showed over 30% larval mortality in the 7th day, respectively. The LC50 values of strains for D. saccharalis varied from 0.08 × 105 (LIIT-0105) to 4104 × 105 (LIIT-2707) spores + crystals mL?1. For D. flavipennella, the LC50 values of strains varied from 0.40 × 105 (LIIT-2707) to 542 × 105 (LIIT-2109) spores + crystals mL?1. For the LIIT-0105 strain, which was the most toxic to D. saccharalis, the genes cry1Aa, cry1Ab, cry1Ac, cry1B, cry1C, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, cry8, and cry9C were detected, whereas for the strain LIIT-2707, which was the most toxic to D. flavipennella, detected genes were cry1Aa, cry1Ab, cry1Ac, cry1B, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, and cry9. The toxicity data and toxin gene content in these strains of Bt suggest a great variability of activity with potential to be used in the development of novel biopesticides or as source of resistance genes that can be expressed in plants to control pests.  相似文献   

14.
Glucose-6-phosphate dehydrogenases (G6PDs) are important enzymes widely used in bioassay and biocatalysis. In this study, we reported the cloning, expression, and enzymatic characterization of G6PDs from the thermophilic bacterium Thermoanaerobacter tengcongensis MB4 (TtG6PD). SDS-PAGE showed that purified recombinant enzyme had an apparent subunit molecular weight of 60 kDa. Kinetics assay indicated that TtG6PD preferred NADP+ (k cat/K m = 2618 mM?1 s?1, k cat = 249 s?1, K m = 0.10 ± 0.01 mM) as cofactor, although NAD+ (k cat/K m = 138 mM?1 s?1, k cat = 604 s?1, K m = 4.37 ± 0.56 mM) could also be accepted. The K m values of glucose-6-phosphate were 0.27 ± 0.07 mM and 5.08 ± 0.68 mM with NADP+ and NAD+ as cofactors, respectively. The enzyme displayed its optimum activity at pH 6.8–9.0 for NADP+ and at pH 7.0–8.6 for NAD+ while the optimal temperature was 80 °C for NADP+ and 70 °C for NAD+. This was the first observation that the NADP+-linked optimal temperature of a dual coenzyme-specific G6PD was higher than the NAD+-linked and growth (75 °C) optimal temperature, which suggested G6PD might contribute to the thermal resistance of a bacterium. The potential of TtG6PD to measure the activity of another thermophilic enzyme was demonstrated by the coupled assays for a thermophilic glucokinase.  相似文献   

15.
Aedes aegypti (L.) is the main vector of tropical diseases such as dengue, chikungunya and Zika. Due to the overuse of insecticides, Ae. aegypti resistant populations have increased. Biological control with Lysinibacillus sphaericus (Ahmed) has been used against Culex sp. and Anopheles sp. Although Ae. aegypti is refractory to the binary toxin of L. sphaericus spores, vegetative cells have been shown to be effective against Ae. aegypti larvae. In this work, the effect of L. sphaericus vegetative cells on Ae. aegypti temephos-resistant larvae was assessed under lab and simulated field conditions. L. sphaericus caused about 90% mortality of insecticide-resistant Ae. aegypti larvae under simulated field conditions. Likewise, Ae. aegypti larvae were more sensitive to mixed cultures of L. sphaericus than to individual strains; then, the most effective mixed culture exhibited an LC50 of 1.21 × 105 CFU/mL with Rockefeller larvae and 8.04 × 104 CFU/mL with field-collected larvae. Additionally, we found that mixed cultures composed of two L. sphaericus strains were more effective than a culture formed by the three strains. Our results suggest that mixed cultures comprising L. sphaericus vegetative cells could be useful for controlling temephos-resistant populations of Ae. aegypti, as evidenced by the effectiveness demonstrated under laboratory and simulated field conditions.  相似文献   

16.
Enterococcus faecalis B3A-B3B produces the bacteriocin B3A-B3B with activity against Listeria monocytogenes, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium perfringens, but apparently not against fungi or Gram-negative bacteria, except for Salmonella Newport. B3A-B3B enterocin has two different nucleotides but similar amino acid composition to the class IIb MR10A-MR10B enterocin. B3A-B3B consists of two peptides of predicted molecular mass of 5176.31 Da (B3A) and 5182.21 Da (B3B). Importantly, B3A-B3B impeded biofilm formation of the foodborne pathogen L. monocytogenes 162 grown on stainless steel. The antimicrobial treatment of stainless steel with nisin (1 or 16 mg ml?1) decreased the cell numbers by about 2 log CFU ml?1, thereby impeding the biofilm formation by L. monocytogenes 162 or its nisin-resistant derivative strain L. monocytogenes 162R. Furthermore, the combination of nisin and B3A-B3B enterocin reduced the MIC required to inhibit this pathogen grown in planktonic or biofilm cultures.  相似文献   

17.
Understanding the dynamics of performance and bacterial community of biofilm under oligotrophic stress is necessary for the process optimization and risk management in biofilm systems for raw water pretreatment. In this study, biofilm obtained from a pilot-scale biofilm reactor was inoculated into a pilot-scale experimental tank for the treatment of oligotrophic raw water. Results showed that the removal of NH4 +–N was impaired in biofilm systems when influent NH4 +–N was less than 0.35 mg L?1 or NH4 +–N loading rate of less than 7.51 mg L?1 day?1. The dominant bacteria detected in biofilm of different carrier were obvious distinct from phylum to genus level under oligotrophic stress. The dominant bacteria in elastic stereo media carrier changed from Proteobacteria (51.1%) to Firmicutes (32.7%), while Proteobacteria was always dominant in suspended ball carrier after long-term operation under oligotrophic conditions. Oligotrophic stress largely decreased the functional bacteria for the removal of nitrogen and organics including many genera in Proteobacteria and Nitrospirae, but increased several genera with spore forming organisms or potential bacterial pathogens in ESM carrier mainly including Bacillus, Mycobacterium, Pseudomonas, etc.  相似文献   

18.
19.
The effect of NO3 ?:NH4 + ratio (14:1, 9:6, 7.5:7.5, 1:14, total 15 mmol/L N) in the nutrient solution on biomass, root morphology, and C and N metabolism parameter in hydroponically grown oilseed rape (Brassica napus L.) was evaluated. The dry weights of leaves and roots were significantly largest at the equal NO3 ?:NH4 + ratio (7.5:7.5) compared with those of high NO3 ?:NH4 + ratio (14:1) or low NO3 ?:NH4 + ratio (1:14). Additionally, low NO3 ?:NH4 + ratio (1:14) reduced total root length and root surface area compared with the equal NO3 ?:NH4 + ratio (7.5:7.5), while high NO3 ?:NH4 + ratio (14:1) did not show any significant effect on root morphology except average diameter. The maximum of chlorophyll a, chlorophyll b and carotenoid were obtained under 7.5:7.5 treatment, whereas the maximum of the leaf net photosynthetic (P n), stomatal conductance (G s) and transpiration rate (T r) were increased with increase in NH4 + concentration in the nutrient solution. The activity of nitrate reductase (NR) showed a significant difference at different NO3 ?:NH4 + ratios and ranged 9:6 > 7.5:7.5 > 14:1 > 1:14, whereas the range of soluble sugar and soluble protein was 7.5:7.5 > 1:14 > 9:6 > 14:1. Our study reveals that oilseed rape growth is greater under 7.5:7.5 treatment than that under three other treatments. Oilseed rape growth at high or low NO3 ?:NH4 + ratios was inhibited by decreased pigments, NR activity, soluble sugar, and soluble protein, whereas subdued root growth should be apprehended considerate under high NH4 + condition.  相似文献   

20.
To introduce endangered plants to urban green space for ex situ conservation successfully, it is important to better understand the optimal NO3 ?/NH4 + ratios for profitable plant. Increasing nitrogen deposition altered the nitrate to ammonium ratio (NO3 ?/NH4 +) in soil. This change may strongly affect the fate of endangered plants, which often have little ability to adapt to environmental changes. In this study, we carried out a microcosm hydroponic experiment by growing Mosla hangchowensis (an endangered species) to test its preference to NO3 ?/NH4 + ratios and used congeneric M. dianthera (a widespread species) for comparison. Results showed that M. hangchowensis preferred an equal NO3 ?/NH4 + ratio to NO3 ? as an N source, with a higher biomass observed under NO3 ?/NH4 + ratios of 50/50 and 75/25 than other treatments. However, M. dianthera preferred NO3 ? as N source, with a higher biomass under NO3 ?/NH4 + ratios of 100/0 and 75/25 than other treatments. NH4 + is the dominant form of N in atmospheric deposition in China and continued increasing in nitrogen deposition may be detrimental to M. hangchowensis, while only have minimal effects on M. dianthera. Urban regions are expanding, and the high environmental heterogeneity in urban areas can provide potential habitats for M. hangchowensis. Based on this study, we advise that the ex suit conservation of M. hangchowensis in urban green spaces needs to adjust the fertilization strategy according to the situation of nitrogen deposition to achieve the optimal NO3 ?/NH4 + ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号