首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For some genes, the epigenetic state (whether they are expressed) depends on whether the gene is inherited through the mother or the father. Such imprinting, or parent-specific gene expression (PSGE), occurs in mammals, including humans, and higher plants. The theory that PSGE solves genetic conflict between mother and father is widely accepted. We argue, however, that the conditions for PSGE to evolve are restricted. With respect to seed size, PSGE can only evolve when the developing offspring has a strong effect on its own resource acquisition. When seed size is close to the optimum for the maternal parent, there is no internal conflict in the offspring because maternally and paternally derived genes both favour increased seed size. Although the literature generally suggests that the maternal parent controls seed size, a number of observations suggest an additional role for the paternal parent. Here, we critically evaluate these studies and suggest a rigorous methodology for establishing paternal effects on seed size, which can be applied to the model species Arabidopsis thaliana.  相似文献   

2.
Plant species and functionally related species groups from arid and semi-arid habitats vary in their capacity to take up summer precipitation, acquire nitrogen quickly after summer precipitation, and subsequently respond with ecophysiological changes (e.g. water and nitrogen relations, gas exchange). For species that respond ecophysiologically, the use of summer precipitation is generally assumed to affect long-term plant growth and thus alter competitive interactions that structure plant communities and determine potential responses to climate change. We assessed ecophysiological and growth responses to large short-term irrigation pulses over one to three growing seasons for several widespread Great Basin and northern Mojave Desert shrub species: Chrysothamnus nauseosus, Sarcobatus vermiculatus, Atriplex confertifolia, and A. parryi. We compared control and watered plants in nine case studies that encompassed adults of all four species, juveniles for three of the species, and two sites for two of the species. In every comparison, plants used summer water pulses to improve plant water status or increase rates of functioning as indicated by other ecophysiological characters. Species and life history stage responses of ecophysiological parameters (leaf N, 15N, 13C, gas exchange, sap flow) were consistent with several previous short-term studies. However, use of summer water pulses did not affect canopy growth in eight out of nine comparisons, despite the range of species, growth stages, and site conditions. Summer water pulses affected canopy growth only for C. nauseosus adults. The general lack of growth effects for these species might be due to close proximity of groundwater at these sites, co-limitation by nutrients, or inability to respond due to phenological canalization. An understanding of the connections between short-term ecophysiological responses and growth, for different habitats and species, is critical for determining the significance of summer precipitation for desert community dynamics.  相似文献   

3.
4.
Folding of globular proteins occurs with rates that range from microseconds to minutes; consequently, it has been necessary to develop new strategies to follow the faster processes that exceed stopped-flow capabilities. Rapid photochemical methods have been employed to study the rate of folding of reduced cytochrome c. In this protein, the iron of the covalently bound heme binds a His and a Met, proximal and distal. Unfolding by guanidine or urea weakens the Fe-Met bond, and the reduced unfolded cytochrome c easily binds CO and other heme ligands, which would react slowly or not at all with the native protein. Therefore in the presence of CO, reduced cytochrome c unfolds at lower denaturant concentrations than in the absence of this ligand, and rapid photochemical removal of CO from unfolded cytochrome c, is expected to trigger at least an incomplete refolding. This approach is complicated by the breakage of the proximal His-Fe bond that may occur as a consequence of CO photodissociation in the unfolded cytochrome c because of the so-called base elimination mechanism. Rebinding of CO to the four-coordinate heme yields kinetic intermediates unrelated to folding. Our hypothesis is supported by parallel observations carried out with protoheme and microperoxidase.  相似文献   

5.
Klimeš  Adam  Klimešová  Lada  Bartušková  Alena  Klimešová  Jitka 《Plant Ecology》2020,221(11):1159-1166

Herbaceous climbers (vines) represent a growth strategy in which the stem lacks most of its supporting function. This has led to the hypothesis that herbaceous climbers are structural parasites that invest less into stems than self-supporting plants. So far, the support for this idea has been ambiguous, as woody and herbaceous plants have been discussed jointly and evidence is often based on young plants in pot experiments. We collected in wild fully grown temperate herbaceous climbers and self-supporting herbs to examine the idea. We made a phylogenetically informed comparison of biomass allocation into stems and leaves of 16 climber species and 74 self-supporting herbs. Furthermore, we compared our results with those published for woody climbers to gain insight into different biomass allocation between herbaceous and woody growth forms. We found that herbaceous climbers and self-supporting herbs do not differ in their proportion of stem biomass to leaf biomass. Herbaceous climbers reach much higher in the canopy thanks to their climbing habit and in average more than seven times longer stems, but contrary to the expectation and unlike their woody counterparts, they do not save on investment into the stem. Herbaceous climbers and self-supporting herbs represent a study system which provides insight into biomass scaling with versus without supporting function where both stems as well as leaves are seasonal.

  相似文献   

6.
7.
8.
Earthworms are known to generally increase plant growth. However, because plant-earthworm interactions are potentially mediated by soil characteristics the response of plants to earthworms should depend on the soil type. In a greenhouse microcosm experiment, the responsiveness of plants (Veronica persica, Trifolium dubium and Poa annua) to two earthworm species (in combination or not) belonging to different functional groups (Aporrectodea. caliginosa an endogeic species, Lumbricus terrestris an anecic species) was measured in term of biomass accumulation. This responsiveness was compared in two soils (nutrient rich and nutrient poor) and two mineral fertilization treatments (with and without). The main significant effects on plant growth were due to the anecic earthworm species. L. terrestris increased the shoot biomass and the total biomass of T. dubium only in the rich soil. It increased also the total biomass of P. annua without mineral fertilization but had the opposite effect with fertilization. Mineral fertilization, in the presence of L. terrestris, also reduced the total biomass of V. persica. L. terrestris did not only affect plant growth. In P. annua and V. persica A. caliginosa and L. terrestris also affected the shoot/root ratio and this effect depended on soil type. Finally, few significant interactions were found between the anecic and the endogeic earthworms and these interactions did not depend on the soil type. A general idea would be that earthworms mostly increase plant growth through the enhancement of mineralization and that earthworm effects should decrease in nutrient-rich soils or with mineral fertilization. However, our results show that this view does not hold and that other mechanisms are influential.  相似文献   

9.
Barth syndrome (BTHS) is an X-linked recessive disorder that is biochemically characterized by low cellular levels of the mitochondrial phospholipid cardiolipin (CL). Previously, we discovered that the yeast disruptant of the TAZ ortholog in Saccharomyces cerevisiae not only displays CL deficiency but also accumulates monolysocardiolipins (MLCLs), which are intermediates in CL remodeling. Therefore, we set out to investigate whether MLCL accumulation also occurs in BTHS. Indeed, we observed MLCL accumulation in heart, muscle, lymphocytes, and cultured lymphoblasts of BTHS patients; however, only very low levels of these lysophospholipids were found in platelets and fibroblasts of these patients. Although the fatty acid composition of the MLCLs was different depending on the tissue source, it did parallel the fatty acid composition of the (remaining) CLs. The possible implications of these findings for the two reported CL remodeling mechanisms, transacylation and deacylation/reacylation, are discussed. Because MLCLs have been proposed to be involved in the initiation of apoptosome-mediated cell death by the sequestration of the proapoptotic protein (t)BH3-interacting domain death agonist (Bid) to the mitochondrial membrane, we used control and BTHS lymphoblasts to investigate whether the accumulation of MLCLs results in higher levels of apoptosis. We found no differences in susceptibility to death receptor-mediated apoptosis or in cellular distribution of Bid, cytochrome c, and other parameters, implying that MLCL accumulation does not lead to enhanced apoptosis in cultured BTHS lymphoblasts.  相似文献   

10.
11.
S R Musk 《Radiation research》1991,125(3):262-266
The effect of caffeine upon the radiosensitivities of three human tumor lines was examined and correlated with its action upon the radiation-induced S-phase and G2-phase blocks. Caffeine was found to reduce at least partially the S-phase and G2-phase blocks in all the cell lines examined but potentiated cytotoxicity in only one of the three tumor lines. That reductions have been demonstrated to occur in the absence of increased cell killing provides supporting evidence for the hypothesis that reductions may not be causal in those cases when potentiation of radiation-induced cytotoxicity is observed in the presence of caffeine.  相似文献   

12.
Interleukin-10 (IL-10) is a cytokine with many regulatory functions. In particular, IL-10 exerts neutralizing effect on other cytokines, and therefore IL-10 is thought to have important therapeutic implications. Recent reports suggest that IL-10 regulates not only immunocytes but also collagen and collagenase gene expression in fibroblasts. In this study, we investigated the effect of IL-10 on gene expression of extracellular matrix (ECM) proteins, such as type I collagen, fibronectin, and decorin, in human skin fibroblasts. Results of Northern blot analysis showed that both collagen I and fibronectin mRNAs were downregulated, while decorin gene expression was enhanced by IL-10 (10 ng/ml) time-dependently (6-24 h). alpha1(I) collagen and fibronectin mRNAs were decreased to one-third and one-fourth, respectively, by 50 ng/ml IL-10, whereas decorin mRNA was increased up to 2.7-fold by 50 ng/ml IL-10. Response to IL-10 by scleroderma fibroblasts was similar to that in normal dermal fibroblasts, with decreased expression levels of collagen and fibronectin and induced decorin mRNA levels. Transforming growth factor-beta (TGF-beta) is a crucial fibrogenic cytokine which upregulates the mRNA expression of collagen and fibronectin, whereas it downregulates decorin mRNA expression in fibroblasts. Monocyte chemoattractant protein-1 (MCP-1) has recently been shown to upregulate the type I collagen mRNA expression in cultured fibroblasts. We therefore examined whether IL-10 alters gene expression of ECM elicited by TGF-beta and MCP-1. Our results demonstrated that IL-10 downregulated the TGF-beta-elicited increase of mRNA expression of type I collagen and fibronectin, while partially recovering TGF-beta-elicited decrease of decorin expression in normal skin fibroblasts. By contrast, IL-10 did not alter the MCP-1-elicited upregulation of mRNA expression of either alpha1(I) collagen and decorin. Our data indicate that IL-10 differentially regulates TGF-beta and MCP-1 in the modulation of ECM proteins and therefore suggest that IL-10 plays a role in the regulation of tissue remodeling.  相似文献   

13.
All insect legs are structurally similar, characterized by five primary segments. However, this final form is achieved in different ways. Primitively, the legs developed as direct outgrowths of the body wall, a condition retained in most insect species. In some groups, including the lineage containing the genus Drosophila, legs develop indirectly from imaginal discs. Our understanding of the molecular mechanisms regulating leg development is based largely on analysis of this derived mode of leg development in the species D. melanogaster. The current model for Drosophila leg development is divided into two phases, embryonic allocation and imaginal disc patterning, which are distinguished by interactions among the genes wingless (wg), decapentaplegic (dpp) and distalless (dll). In the allocation phase, dll is activated by wg but repressed by dpp. During imaginal disc patterning, dpp and wg cooperatively activate dll and also indirectly inhibit the nuclear localization of Extradenticle (Exd), which divide the leg into distal and proximal domains. In the grasshopper Schistocerca americana, the early expression pattern of dpp differs radically from the Drosophila pattern, suggesting that the genetic interactions that allocate the leg differ between the two species. Despite early differences in dpp expression, wg, Dll and Exd are expressed in similar patterns throughout the development of grasshopper and fly legs, suggesting that some aspects of proximodistal (P/D) patterning are evolutionarily conserved. We also detect differences in later dpp expression, which suggests that dpp likely plays a role in limb segmentation in Schistocerca, but not in Drosophila. The divergence in dpp expression is surprising given that all other comparative data on gene expression during insect leg development indicate that the molecular pathways regulating this process are conserved. However, it is consistent with the early divergence in developmental mode between fly and grasshopper limbs.  相似文献   

14.
15.
1. Despite considerable theoretical work, the evolution of population stability has rarely been investigated empirically. Moreover, it is not clear whether different stability properties of a population evolve together, or independently. 2. We investigate the evolution of two aspects of population stability using laboratory populations of Drosophila melanogaster selected for faster preadult development and early reproduction, and their matched controls. 3. We show that the constancy stability of the selected populations is significantly higher than their controls, confirming a previous observation that population stability can evolve as a by-product of life-history evolution. This enhanced constancy stability is due to a reduced maximal per capita growth rate, brought about by a reduction in fecundity of the selected populations as a result of the trade-off between developmental rate and fecundity. 4. Persistence stability, as reflected by the probability of extinction, does not differ significantly between selected and control populations. 5. We also show how seemingly trivial experimental details, such as the protocol for restarting extinct populations, can interact with life-history traits to alter the manifestation of the stability properties of a population.  相似文献   

16.
We have identified two temperature-sensitive peroxisome-deficient mutants of Hansenula polymorpha (ts6 and ts44) within a collection of ts mutants which are impaired for growth on methanol at 43 degrees C but grow well at 35 degrees C. In both strains peroxisomes were completely absent in cells grown at 43 degrees C; the major peroxisomal matrix enzymes alcohol oxidase, dihydroxyacetone synthase and catalase were synthesized normally but assembled into the active enzyme protein in the cytosol. As in wild-type cells, these enzymes were present in peroxisomes under permissive growth conditions (< or = 37 degrees C). However, at intermediate temperatures (38-42 degrees C) they were partly peroxisome-bound and partly resided in the cytosol. Genetic analysis revealed that both mutant phenotypes were due to monogenic recessive mutations mapped in the same gene, designated PER13. After a shift of per13-6ts cells from restrictive to permissive temperature, new peroxisomes were formed within 1 h. Initially one--or infrequently a few--small organelles developed which subsequently increased in size and multiplied by fission during prolonged permissive growth. Neither mature peroxisomal matrix nor membrane proteins, which were present in the cytosol prior to the temperature shift, were incorporated into the newly formed organelles. Instead, these proteins remained unaffected (and active) in the cytosol concomitant with further peroxisome development. Thus in H.polymorpha alternative mechanisms of peroxisome biogenesis may be possible in addition to multiplication by fission upon induction of the organelles by certain growth substrates.  相似文献   

17.
18.
19.
Epitope mapping (identification of an antigenic site recognized by an antibody) is an important component of vaccine development and immunological assays. It is widely accepted that in Western blots, antibodies react exclusively with continuous epitopes: discontinuous epitopes are assumed to be irreversibly destroyed by electrophoresis under the denaturing conditions used for sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Here, we demonstrate that the epitopes recognized by four different monoclonal antibodies were identified as discontinuous epitopes when characterized by radioimmunoprecipitation assays and enzyme-linked immunosorbent assays, yet each of these antibodies reacted with the corresponding antigen on Western blots. Reaction on Western blots may be due to epitope renaturation during or after the transfer of the protein to a membrane. Therefore, positive reactions on Western blots do not necessarily indicate that epitopes are continuous and this caveat should be kept in mind while characterizing them.  相似文献   

20.
In many animal groups, coordinated activity is facilitated by the emergence of leaders and followers. Although the identity of leaders is to some extent predictable, most groups experience frequent changes of leadership. How do group members cope with such changes in their social role? Here, we compared the foraging behaviour of pairs of stickleback fish after a period of either (i) role reinforcement, which involved rewarding the shyer follower for following, and the bolder leader for leading, or (ii) role reversal, which involved rewarding the shyer follower for leading, and the bolder leader for following. We found that, irrespective of an individual''s temperament, its tendency to follow is malleable, whereas the tendency to initiate collective movement is much more resistant to change. As a consequence of this lack of flexibility in initiative, greater temperamental differences within a pair led to improved performance when typical roles were reinforced, but to impaired performance when typical roles were reversed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号