首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The circulating population of peripheral T lymphocytes obtained from a blood sample can provide a large amount of information about an individual's medical status and history. Recent evidence indicates that the detection and functional characterization of antigen-specific T cell subsets within the circulating population may provide a diagnostic indicator of disease and has the potential to predict an individual's response to therapy. In this report, a microarray detection platform that combines grating-coupled surface plasmon resonance imaging (GCSPRI) and grating-coupled surface plasmon coupled emission (SPCE) fluorescence detection modalities were used to detect and characterize CD4(+) T cells. The microspot regions of interest (ROIs) printed on the array consisted of immobilized antibodies or peptide loaded MHC monomers (p/MHC) as T cell capture ligands mixed with additional antibodies as cytokine capture ligands covalently bound to the surface of a corrugated gold sensor chip. Using optimized parameters, an unlabeled influenza peptide reactive T cell clone could be detected at a frequency of 0.1% in a mixed T cell sample using GCSPRI. Additionally, after cell binding was quantified, differential TH1 cytokine secretion patterns from a T cell clone cultured under TH1 or TH2 inducing conditions was detected using an SPCE fluorescence based assay. Differences in the secretion patterns of 3 cytokines, characteristic of the inducing conditions, indicated that differences were a consequence of the functional status of the captured cells. A dual mode GCSPRI/SPCE assay can provide a rapid, high content T cell screening/characterization tool that is useful for diagnosing disease, evaluating vaccination efficacy, or assessing responses to immunotherapeutics.  相似文献   

2.
Increased interest in sustainable agriculture and bio-based industries requires that we find more energy-efficient methods for treating cellulose-containing wastewaters. We examined the effectiveness of simultaneous electricity production and treatment of a paper recycling plant wastewater using microbial fuel cells. Treatment efficiency was limited by wastewater conductivity. When a 50 mM phosphate buffer solution (PBS, 5.9 mS/cm) was added to the wastewater, power densities reached 501 +/- 20 mW/m(2), with a coulombic efficiency of 16 +/- 2%. There was efficient removal of soluble organic matter, with 73 +/- 1% removed based on soluble chemical oxygen demand (SCOD) and only slightly greater total removal (76 +/- 4%) based on total COD (TCOD) over a 500-h batch cycle. Cellulose was nearly completely removed (96 +/- 1%) during treatment. Further increasing the conductivity (100 mM PBS) increased power to 672 +/- 27 mW/m(2). In contrast, only 144 +/- 7 mW/m(2) was produced using an unamended wastewater (0.8 mS/cm) with TCOD, SCOD, and cellulose removals of 29 +/- 1%, 51 +/- 2%, and 16 +/- 1% (350-h batch cycle). These results demonstrate limitations to treatment efficiencies with actual wastewaters caused by solution conductivity compared to laboratory experiments under more optimal conditions.  相似文献   

3.
Jiang H  Luo S  Shi X  Dai M  Guo RB 《Biotechnology letters》2012,34(7):1269-1274
A system containing a sequential anode-cathode configuration microbial fuel cell and a photobioreactor was developed for continuous treatment of wastewater and electricity generation. Wastewater was treated by the fuel cell to decrease the chemical oxygen demand (COD), phosphorus and nitrogen and to produce electricity. The effluent from the cathode compartment of the cell was continuously fed to an external photobioreactor to remove the remaining P and N using microalgae. Alone, the fuel cell generated a maximum power of 20.3 W/m(3) and achieved removal of 85 % COD, 58 % total phosphorus (TP) and 91 % NH(4) (+)-N. When coupled with the photobioreactor, the system removed 92 % TP and 99 % NH(4) (+)-N. These results demonstrate both the effectiveness and the potential application of the coupled system to continuously treat domestic wastewater and simultaneously generate electricity.  相似文献   

4.
5.
Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to recover energy from organic matter in the form of electricity. One of the goals of MFC research is to develop the technology for cost-effective wastewater treatment. However, before practical MFC applications are implemented it is important to gain fundamental knowledge about long-term system performance, reproducibility, and the formation and maintenance of functionally-stable microbial communities. Here we report findings from a MFC operated for over 300 days using only primary clarifier effluent collected from a municipal wastewater treatment plant as the microbial resource and substrate. The system was operated in a repeat-batch mode, where the reactor solution was replaced once every two weeks with new primary effluent that consisted of different microbial and chemical compositions with every batch exchange. The turbidity of the primary clarifier effluent solution notably decreased, and 97% of biological oxygen demand (BOD) was removed after an 8-13 day residence time for each batch cycle. On average, the limiting current density was 1000 mA/m(2), the maximum power density was 13 mW/m(2), and coulombic efficiency was 25%. Interestingly, the electrochemical performance and BOD removal rates were very reproducible throughout MFC operation regardless of the sample variability associated with each wastewater exchange. While MFC performance was very reproducible, the phylogenetic analyses of anode-associated electricity-generating biofilms showed that the microbial populations temporally fluctuated and maintained a high biodiversity throughout the year-long experiment. These results suggest that MFC communities are both self-selecting and self-optimizing, thereby able to develop and maintain functional stability regardless of fluctuations in carbon source(s) and regular introduction of microbial competitors. These results contribute significantly toward the practical application of MFC systems for long-term wastewater treatment as well as demonstrating MFC technology as a useful device to enrich for functionally stable microbial populations.  相似文献   

6.
Olive mill wastewaters create significant environmental issues in olive-processing countries. One of the most hazardous groups of pollutants in these wastewaters is phenolic compounds. Here, olive mill wastewater was used as substrate and treated in single-chamber air-cathode microbial fuel cells. Olive mill wastewater yielded a maximum voltage of 381 mV on an external resistance of 1 kΩ. Notable decreases in the contents of 3,4-dihydroxybenzoic acid, tyrosol, gallic acid and p-coumaric acid were detected. Chemical oxygen demand removal rates were 65 % while removal of total phenolics by the process was lower (49 %). Microbial community analysis during the olive mill wastewater treating MFC has shown that both exoelectrogenic and phenol-degrading microorganisms have been enriched during the operation. Brevundimonas-, Sphingomonas- and Novosphingobium-related phylotypes were enriched on the anode biofilm, while Alphaproteobacteria and Bacteriodetes dominated the cathode biofilm. As one of the novel studies, it has been demonstrated that recalcitrant olive mill wastewaters could be treated and utilized for power generation in microbial fuel cells.  相似文献   

7.
Sustainable wastewater treatment: How might microbial fuel cells contribute   总被引:1,自引:0,他引:1  
The need for cost-effective low-energy wastewater treatment has never been greater. Clean water for our expanding and predominantly urban global population will be expensive to deliver, eats into our diminishing carbon-based energy reserves and consequently contributes to green house gases in the atmosphere and climate change. Thus every potential cost and energy cutting measure for wastewater treatment should be explored. Microbial fuel cells (MFCs) could potentially yield such savings but, to achieve this, requires significant advances in our understanding in a few critical areas and in our designs of the overall systems. Here we review the research which might accelerate our progress towards sustainable wastewater treatment using MFCs: system control and modelling and the understanding of the ecology of the microbial communities that catalyse the generation of electricity.  相似文献   

8.
Microbial fuel cells (MFCs) and membrane photobioreactors are two emerging technologies for simultaneous wastewater treatment and bioenergy production. In this study, those two technologies were coupled to form an integrated treatment system, whose performance was examined under different operating conditions. The coupled system could achieve 92–97 % removal of soluble chemical oxygen demand (SCOD) and nearly 100 % removal of ammonia. Extending the hydraulic retention time (HRT) of the membrane photobioreactor to 3.0 days improved the production of algal biomass from 44.4 ± 23.8 to 133.7 ± 12.9 mg L?1 (based on the volume of the treated water). When the MFCs were operated in a loop mode, their effluent (which was the influent to the algal reactor) contained nitrate and had a high pH, leading to the decreased algal production in the membrane photobioreactor. Energy analysis showed that the energy consumption was mainly due to the recirculation of the anolyte and the catholyte in the MFCs and that decreasing the recirculation rates could significantly reduce energy consumption. The energy production was dominated by indirect electricity generation from algal biomass. The highest energy production of 0.205 kWh m?3 was obtained with the highest algal biomass production, resulting in a theoretically positive energy balance of 0.033 kWh m?3. Those results have demonstrated that the coupled system could be an alternative approach for energy-efficient wastewater treatment and using wastewater effluent for algal production.  相似文献   

9.
Removal efficiency of gold from a solution of pure tetrachloroaurate ions was investigated using microbial fuel cell (MFC) technology. The effects of type of catholyte solution and initial gold concentration on the removal efficiency were considered. Due to its presence at high levels in the gold wastewater, the effect of copper ions on the removal efficiency of the gold ions was also studied. The effects of pH and initial biomass concentration on the gold removal efficiency was also determined. The results showed that after 5 h contact time, 95% of gold removal efficiency from a wastewater containing 250 ppm of initial gold ions at ambient temperature using 80 g/L yeast concentration was achieved. After 48 h of the cell''s operation under the same condition, 98.86% of AuCl4 ions were successfully removed from the solution. At initial gold concentration in the waste solution of 250 ppm, pH 2, and initial yeast concentration of 80 g/L, 100% removal efficiency of the gold was achieved. On the other hand, the most suitable condition for copper removal was found at a pH of 5.2, where 53% removal efficiency from the waste solution was accomplished.  相似文献   

10.
A photosynthetic algal microbial fuel cell (PAMFC) was constructed by the introduction of immobilized microalgae (Chlorella vulgaris) into the cathode chamber of microbial fuel cells to fulfill electricity generation, biomass production and wastewater treatment. The immobilization conditions, including the concentration of immobilized matrix, initial inoculation concentration and cross-linking time, were investigated both for the growth of C. vulgaris and power generation. It performed the best at 5 % sodium alginate and 2 % calcium chloride as immobilization matrix, initial inoculation concentration of 106 cell/mL and cross-linking time of 4 h. Our findings indicated that C. vulgaris immobilization was an effective and promising approach to improve the performance of PAMFC, and after optimization the power density and Coulombic efficiency improved by 258 and 88.4 %, respectively. Important parameters such as temperature and light intensity were optimized on the performance. PAMFC could achieve a COD removal efficiency of 92.1 %, and simultaneously the maximum power density reached 2,572.8 mW/m3 and the Coulombic efficiency was 14.1 %, under the light intensity of 5,000 lux and temperature at 25 °C.  相似文献   

11.
The International Journal of Life Cycle Assessment - An osmotic microbial fuel cell (OsMFC) is derived from the integration of a forward osmosis (FO) membrane into a conventional microbial fuel...  相似文献   

12.
Microbial fuel cells (MFCs) fed with wastewater are currently considered a feasible strategy for production of renewable electricity.  相似文献   

13.
Rapid startup of microbial fuel cells (MFCs) and other bioreactors is desirable when treating wastewaters. The startup time with unamended wastewater (118 h) was similar to that obtained by adding acetate or fumarate (110-115 h), and less than that with glucose (181 h) or Fe(III) (353 h). Initial current production took longer when phosphate buffer was added, with startup times increasing with concentration from 149 h (25 mM) to 251 h (50 mM) and 526 h (100 mM). Microbial communities that developed in the reactors contained Betaproteobacteria, Acetoanaerobium noterae, and Chlorobium sp. Anode biomass densities ranged from 200 to 600 μg/cm2 for all amendments except Fe(Ш) (1650 μg/cm2). Wastewater produced 91 mW/m2, with the other MFCs producing 50 mW/m2 (fumarate) to 103 mW/m2 (Fe(III)) when amendments were removed. These experiments show that wastewater alone is sufficient to acclimate the reactor without the need for additional chemical amendments.  相似文献   

14.
Electricity production and modeling of microbial fuel cell (MFC) from continuous beer brewery wastewater was studied in this paper. A single air-cathode MFC was constructed, carbon fiber was used as anode and diluted brewery wastewater (COD = 626.58 mg/L) as substrate. The MFC displayed an open-circuit voltage of 0.578 V and a maximum power density of 9.52 W/m3 (264 mW/m2). Using the model based on polarization curve, various voltage losses were quantified. At current density of 1.79 A/m2, reaction kinetic loss and mass transport loss both achieved to 0.248 V; while ohmic loss was 0.046 V. Results demonstrated that it was feasible and stable for producing bioelectricity from brewery wastewater; while the most important factors which influenced the performance of the MFC are reaction kinetic loss and mass transport loss.  相似文献   

15.
A microbial fuel cell (MFC) was optimized in terms of MFC design factors and operational parameters for continuous electricity production using artificial wastewater (AW). The performance of MFC was analyzed through the polarization curve method under different conditions using a mediator-less MFC. The highest power density of 0.56 W/m2 was achieved with AW of 300 mg/l fed at the rate of 0.53 ml/min at 35 degrees C. The power per unit cell working volume was 102 mW/l, which was over 60 times higher than those reported in the previous mediator-less MFCs which did not use a cathode or an anode mediator. The power could be stably generated over 2 years.  相似文献   

16.
A new highly scalable microbial fuel cell (MFC) design, consisting of a series of cassette electrodes (CE), was examined for increasing power production from organic matter in wastewater. Each CE chamber was composed of a box-shaped flat cathode (two air cathodes on both sides) sandwiched in between two proton-exchange membranes and two graphite-felt anodes. Due to the simple design of the CE-MFC, multiple cassettes can be combined to form a single unit and inserted into a tank to treat wastewater. A 12-chamber CE-MFC was tested using a synthetic wastewater containing starch, peptone, and fish extract. Stable performance was obtained after 15 days of operation in fed-batch mode, with an organic removal efficiency of 95% at an organic loading rate of 2.9 kg chemical oxygen demand (COD) per cubic meter per day and an efficiency of 93% at 5.8 kg COD per cubic meter per day. Power production was stable during this period, reaching maximum power densities of 129 W m(-3) (anode volume) and 899 mW m(-2) (anode projected area). The internal resistance of CE-MFC decreased from 2.9 (day 4) to 0.64 Omega (day 25). These results demonstrate the usefulness of the CE-MFC design for energy production and organic wastewater treatment.  相似文献   

17.
The performance of a prototype up‐flow single‐chambered microbial fuel cell (MFC) for electrical power generation using brewery wastewater as fuel is reported. The designed reactor consisted of three zones, namely a lower anaerobic digestion zone, a central MFC zone, and an upper effluent clarifier zone. Tests were conducted in batch mode using a beer wastewater as the fuel/electron donor (COD concentration: 430 mg/L) and mixed consortia (both sewage microflora and anaerobic sludge) as a source of electrogenic bacteria. A stable current density of ~2,270 mA/m2 was generated under continuous polarization with a constant external resistance (0.01 kΩ) and cell polarization gave a peak power density of 330 mW/m2 at a current density of 1,680 mA/m2. Electrochemical impedance analysis showed that the overall internal resistance of the reactor was quite low, that is, 8.0 Ω. Cyclic voltammetric analysis of the anodic biofilm at low scan rate revealed quite complex processes at the anode, with three redox peaks, at potentials of 116, 214, and 319 mV (vs. NHE). Biotechnol. Bioeng. 2010;107: 52–58. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
Simultaneous carbon and nitrogen removal using loop configuration microbial fuel cell (MFC) with relatively large size of 5 L was investigated in this study. Four MFC reactors were constructed with a loop configuration to eliminate the pH gradient, and the reactor performance was examined with different separators and cathode materials. The performance of the reactors in terms of electricity generation and contaminant removal rate was examined. Results showed that a maximum power density of 1415.6 mW/m3 (The empty bed volume of anode chamber) was obtained at a current density of 3258.5 mA/m3 with cation exchange membrane as separator and graphite felt (Pt coated) as cathode using the piggery wastewater as feed, and the organic removal rate obtained was approximately 0.523 kg COD/m3/d (total anode chamber) with nitrogen removal rate of 0.194 kg N/m3/d (total cathode chamber).  相似文献   

19.
The present study emphasizes the importance of overcoming proton limitation in a microbial fuel cell operated on domestic wastewater. When the anode-treated effluent was allowed to trickle into the cathodic compartment (full-loop operation), high COD and suspended solids removal efficiencies over 75% and 84%, respectively, were achieved while ensuring substantial and sustainable power generation. Lower removal efficiencies resulted in decreased cell electromotive force caused by excess substrate crossover. By decreasing the pH in the cathodic compartment to values below 2, we were able to further increase the maximum power generation by 180% in batch mode and 380% in continuous mode as compared to a negative control (tap water of pH 7.6). Under the optimized conditions, the internal resistance and electromotive force were 11 Ω and 0.6 V, respectively, which correspond to the state of the art.  相似文献   

20.
Electricity generation from microbial fuel cells which treat food processing wastewater was investigated in this study. Anaerobic anode and aerobic cathode chambers were separated by a proton exchange membrane in a two-compartment MFC reactor. Buffer solutions and food industry wastewater were used as electrolytes in the anode and cathode chambers, respectively. The produced voltage and current intensity were measured using a digital multimeter. Effluents from the anode compartment were tested for COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity. The maximum current density and power production were measured 527 mA/m2 and 230 mW/m2 in the anode area, respectively, at operation organic loading (OLR) of 0.364 g COD/l.d. At OLR of 0.182 g COD/l.d, maximum voltage and columbic efficiency production were recorded 0.475 V and 21%, respectively. Maximum removal efficiency of COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity were 86, 79, 73, 18, 68, 62, 30 and 58%, respectively. The results indicated that catalysts and mediator-less microbial fuel cells (CAML-MFC) can be considered as a better choice for simple and complete energy conversion from the wastewater of such industries and also this could be considered as a new method to offset wastewater treatment plant operating costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号