首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The 6.4 kb transposable element Tpn1 belonging to the En/Spm family was found within one of the DFR (dihydroflavonol-4-reductase) genes for anthocyanin biosynthesis in a line of Japanese morning glory (Pharbitis nil) bearing variegated flowers. Sequencing of the Tpn1 element revealed that it is 6412 by long and carries 28-bp perfect terminal inverted repeats. Its subterminal repetitive regions, believed to be the cis-acting sequences for transposition, show striking structural features. Twenty-two copies of the 10-bp sequence motif GACAACGGTT can be found as direct or inverted repeats within 650 by of the 5 end of the element, and 33 copies of the sequence motif lie within 800 by of the 3 terminus. All these 22 copies of the sequence motif near the 5 terminus and 30 copies in the 3 terminal region are arranged as inverted repeats and 3–8 by AT-rich sequences are detected between these inverted repeats. In addition, four copies of 122-bp tandem repeats and six copies of 104-bp tandem repeats are present in the 5 and 3 subterminal repetitive regions, respectively. No large open reading frame characteristic of autonomous elements of the En/Spm family can be detected within the element. The results are discussed with respect to heritable changes in flower variegation in this line of Japanese morning glory.  相似文献   

2.
Summary We have identified two repetitive element families in the genome of the nematodeCaenorhabditis briggsae with extensive sequence identity to theCaenorhabditis elegans transposable element Tc1. Five members each of the TCb1 (previously known as Barney) and TCb2 families were isolated by hybridization to a Tc1 probe. Tc1-hybridizing repetitive elements were grouped into either the TCb1 or TCb2 family based on cross-hybridization intensities among theC. briggsae elements. The genomic copy number of the TCb1 family is 15 and the TCb2 family copy number is 33 in theC. briggsae strain G16. The two transposable element families show numerous genomic hybridization pattern differences between twoC. briggsae strains, suggestive of transpositional activity. Two members of the TCb1 family, TCb1#5 and TCb1#10, were sequenced. Each of these two elements had suffered an independent single large deletion. TCb1#5 had a 627-bp internal deletion and TCb1#10 had lost 316 bp of one end. The two sequenced TCb1 elements were highly conserved over the sequences they shared. A 1616-bp composite TCb1 element was constructed from TCb1#5 and TCb1#10. The composite TCb1 element has 80-bp terminal inverted repeats with three nucleotide mismatches and two open reading frames (ORFs) on opposite strands. TCb1 and the 1610-bp Tc1 share 58% overall nucleotide sequence identity, and the greatest similarity occurs in their ORF1 and inverted repeat termini.  相似文献   

3.
The 6.4 kb transposable element Tpn1 belonging to the En/Spm family was found within one of the DFR (dihydroflavonol-4-reductase) genes for anthocyanin biosynthesis in a line of Japanese morning glory (Pharbitis nil) bearing variegated flowers. Sequencing of the Tpn1 element revealed that it is 6412 by long and carries 28-bp perfect terminal inverted repeats. Its subterminal repetitive regions, believed to be the cis-acting sequences for transposition, show striking structural features. Twenty-two copies of the 10-bp sequence motif GACAACGGTT can be found as direct or inverted repeats within 650 by of the 5′ end of the element, and 33 copies of the sequence motif lie within 800 by of the 3′ terminus. All these 22 copies of the sequence motif near the 5′ terminus and 30 copies in the 3′ terminal region are arranged as inverted repeats and 3–8 by AT-rich sequences are detected between these inverted repeats. In addition, four copies of 122-bp tandem repeats and six copies of 104-bp tandem repeats are present in the 5′ and 3′ subterminal repetitive regions, respectively. No large open reading frame characteristic of autonomous elements of the En/Spm family can be detected within the element. The results are discussed with respect to heritable changes in flower variegation in this line of Japanese morning glory.  相似文献   

4.
A family of repetitive DNA elements of approximately 350 bp—Sat350—that are members of Toxoplasma gondii satellite DNA was further analyzed. Sequence analysis identified at least three distinct repeat types within this family, called types A, B, and C. B repeats were divided into the subtypes B1 and B2. A search for internal repetitions within this family permitted the identification of conserved regions and the design of PCR primers that amplify almost all these repetitive elements. These primers amplified the expected 350-bp repeats and a novel 680-bp repetitive element (Sat680) related to this family. Two additional tandemly repeated high-order structures corresponding to this satellite DNA family were found by searching the Toxoplasma genome database with these sequences. These studies were confirmed by sequence analysis and identified: (1) an arrangement of AB1CB2 350-bp repeats and (2) an arrangement of two 350-bp-like repeats, resulting in a 680-bp monomer. Sequence comparison and phylogenetic analysis indicated that both high-order structures may have originated from the same ancestral 350-bp repeat. PCR amplification, sequence analysis and Southern blot showed that similar high-order structures were also found in the Toxoplasma-sister taxon Neospora caninum. The Toxoplasma genome database ( ) permitted the assembly of a contig harboring Sat350 elements at one end and a long nonrepetitive DNA sequence flanking this satellite DNA. The region bordering the Sat350 repeats contained two differentially expressed sequence-related regions and interstitial telomeric sequences.  相似文献   

5.
A new repetitive DNA region was identified in the non-transcribed spacer of human rDNA, namely a long (4.6 kb) sequence motif (Xbal element) was present in two copies. The repeating unit composed of two parts. One of them consisted of unique nucleotide sequences, interrupted by some simple sequences. The other, about 3.1 kb long one assembled only from highly repeated simple sequences. The unique sequence region contained two, inverted copies of the human AluI type repetitive DNA family. The authors suggest that the XbaI elements may flank the tandem arrays of human rRNA genes as terminal repeats and they might function both as the origin of rDNA replication and/or site of homologous recombination.  相似文献   

6.
    
TheMagnaporthe grisea repeat (MGR) sequence MGR586 has been widely used for population studies of the rice blast fungus, and has enabled classification of the fungal population into hundreds of genetic lineages. While studying the distribution of MGR586 sequences in strains ofM. grisea, we discovered that the plasmid probe pCB586 contains a significant amount of single-copy DNA. To define precisely the boundary of the repetitive DNA in pCB586, this plasmid and four cosmid clones containing MGR586 were sequenced. Only 740 bp of one end of the 2.6-bp insert in the pCB586 plasmid was common to all clones. DNA sequence analysis of cosmid DNA revealed that all the cosmids contained common sequences beyond the cloning site in pCB586, indicating that the repetitive DNA in the fingerprinting clone is part of a larger element. The entire repetitive element was sequenced and found to resemble an inverted repeat transposon. This putative transposon is 1.86 kb in length and has perfect terminal repeats of 42 bp, which themselves contain direct repeats of 16 bp. The internal region of the transposon possesses one open reading frame which shows similarity at the peptide level to the Pot2 transposon fromM. grisea and Fot1 fromFusarium oxysporum. Hybridization studies using the entire element as a probe revealed that some strains ofM. grisea, whose DNA hybridized to the pCB586 probe, entirely lacked MGR586 transposon sequences.  相似文献   

7.
We describe here a repetitive chromosomal element, which appears to be an insertion sequence, isolated from Clavibacter xyli subsp. cynodontis, a gram-positive plant-associated bacterium. The element, IS1237, is 905 bp in size, is bounded by 19-bp perfect inverted repeats and 3-bp direct repeats, and appears at least 16 times in the genome. It contains three open reading frames which show similarity to open reading frames from various other insertion sequences. We have found that there are two groups of related mobile elements: one in which two open reading frames are read separately and the other in which these two open reading frames are fuse together to give one predicted protein product. Using one of these open reading frames to search amino acid sequence databases, we found two instances in which similar reading frames flank genes carried on plasmids. We believe therefore that these plasmid-borne genes may be parts of previously unidentified mobile elements. For IS1237, a frameshift in two of the open reading frames and a stop codon in the third may indicate that this particular copy of the element is no longer active in transposition. The similarity of IS1237 to other elements from both gram-negative and gram-positive bacteria provides further evidence that mobile elements have been transferred between these two bacterial groups.  相似文献   

8.
Organization of the human myoglobin gene.   总被引:23,自引:3,他引:20       下载免费PDF全文
Cross-hybridization of the grey seal myoglobin gene to human DNA detected a single human myoglobin gene plus an extensive family of sequences apparently related to the central exon of this gene. The functional human gene is 10.4 kb long and has a haemoglobin-like three exon/two intron structure with long non-coding regions similar to its seal homologue. At least 300 bp of 5'-flanking region are closely homologous between the two genes, with the exception of a divergent purine-rich region 68-114 bp upstream of the cap site. A diverged tandem repetitive sequence based on (GGAT)165 is located 1100-1750 bp upstream from the gene; internal homology units within this sequence suggest sequence homogenization by gene microconversions. A second 33-bp tandem repeat element in the first intron is flanked by a 9-bp direct repeat, shares homology with other tandem repetitive elements in the human genome and may represent a novel form of transposable element.  相似文献   

9.
Summary Hybridization experiments indicated that the maize genome contains a family of sequences closely related to the Ds1 element originally characterized from theAdh1-Fm335 allele of maize. Examples of these Ds1-related segments were cloned and sequenced. They also had the structural properties of mobile genetic elements, i.e., similar length and internal sequence homology with Ds1, 10- or 11-bp terminal inverted repeats, and characteristic duplications of flanking genomic DNA. All sequences with 11-bp terminal inverted repeats were flanked by 8-bp duplications, but the duplication flanking one sequence with 10-bp inverted repeats was only 6 bp. Similar Ds1-related sequences were cloned fromTripsacum dactyloides. They showed no more divergence from the maize sequences than the individual maize sequences showed when compared with each other. No consensus sequence was evident for the sites at which these sequences had inserted in genomic DNA.  相似文献   

10.
Fabry disease, an inborn error of glycosphingolipid catabolism, results from mutations in the X-linked gene encoding the lysosomal enzyme, alpha-galactosidase A (EC 3.2.1.22). Six alpha-galactosidase A gene rearrangements that cause Fabry disease were investigated to assess the role of Alu repetitive elements and short direct and/or inverted repeats in the generation of these germinal mutations. The breakpoints of five partial gene deletions and one partial gene duplication were determined by either cloning and sequencing the mutant gene from an affected hemizygote, or by polymerase chain reaction amplifying and sequencing the genomic region containing the novel junction. Although the alpha-galactosidase A gene contains 12 Alu repetitive elements (representing approximately 30% of the 12-kilobase (kb) gene or approximately 1 Alu/1.0 kb), only one deletion resulted from an Alu-Alu recombination. The remaining five rearrangements involved illegitimate recombinational events between short direct repeats of 2 to 6 base pairs (bp) at the deletion or duplication breakpoints. Of these rearrangements, one had a 3' short direct repeat within an Alu element, while another was unusual having two deletions of 1.7 kb and 14 bp separated by a 151-bp inverted sequence. These findings suggested that slipped mispairing or intrachromosomal exchanges involving short direct repeats were responsible for the generation of most of these gene rearrangements. There were no inverted repeat sequences or alternating purine-pyrimidine regions which may have predisposed the gene to these rearrangements. Intriguingly, the tetranucleotide CCAG and the trinucleotide CAG (or their respective complements, CTGG and CTG) occurred within or adjacent to the direct repeats at the 5' breakpoints in three and four of the five alpha-galactosidase A gene rearrangements, respectively, suggesting a possible functional role in these illegitimate recombinational events. These studies indicate that short direct repeats are important in the formation of gene rearrangements, even in human genes like alpha-galactosidase A that are rich in Alu repetitive elements.  相似文献   

11.
The mouse genomic locus containing the oncogene c-mos was analyzed for repetitive DNA sequences. We found a single B1 repeat 10 kb upstream and three B1 repeats 0.6 kb, 2.7 kb, and 5.4 kb, respectively, downstream from c-mos. The B1 repeat closest to c-mos contains an internal 7-bp duplication and a 18-bp insertion. Localized between the last two B1 repeats is a copy of a novel mouse repeat. Sequence comparison of three copies of this novel repeat family shows that they a) contain a conserved BglII site, b) are approximately 420 bp long, c) possess internal 50-bp polypurine tracts, and d) have structural characteristics of transposable elements. They are present in about 1500 copies per haploid genome in the mouse, but are not detectable in DNA of other mammals. The BglII repeat downstream from c-mos is interrupted by a single 632-bp LTR element. We estimate that approximately 1200 copies of this element are present per haploid genome in BALB/c mice. It shares sequence homology in the R-U5 region with an LTR element found in 129/J mice.  相似文献   

12.
A DNA fragment located on the 3' side of the Coxiella burnetii htpAB operon was determined by Southern blotting to exist in approximately 19 copies in the Nine Mile I genome. The DNA sequences of this htpAB-associated repetitive element and two other independent copies were analyzed to determine the size and nature of the element. The three copies of the element were 1,450, 1,452, and 1,458 bp long, with less than 2% divergence among the three sequences. Several features characteristic of bacterial insertion sequences were discovered. These included a single significant open reading frame that would encode a 367-amino-acid polypeptide which was predicted to be highly basic, to have a DNA-binding helix-turn-helix motif, to have a leucine zipper motif, and to have homology to polypeptides found in several other bacterial insertion sequences. Identical 7-bp inverted repeats were found at the ends of all three copies of the element. However, duplications generated by many bacterial mobile elements in the recipient DNA during insertion events did not flank the inverted repeats of any of the three C. burnetii elements examined. A second pair of inverted repeats that flanked the open reading frame was also found in all three copies of the element. Most of the divergence among the three copies of the element occurred in the region between the two inverted repeat sequences in the 3' end of the element. Despite the sequence changes, all three copies of the element have retained significant dyad symmetry in this region.  相似文献   

13.
A physical technique known as two-dimensional S1 nuclease heteroduplex mapping has been applied to genomic DNA from the Gram-negative coccus Neisseria gonorrhoeae. This has resulted in the detection of two novel types of repetitive sequences. The first type is a repetitive sequence family of 152 base pairs (bp), whose ends are composed of inverted repeats of 26 bp. There are approximately 20 copies of this sequence, in both N. gonorrhoeae and Neisseria meningitidis (Correia, F., Inouye, S., and Inouye, M. (1986) J. Bacteriol. 167, 1009-1011). The second type of sequence is a 1443-bp duplication in the N. gonorrhoeae genome. The two classes of sequence are linked positionally. Each copy of the long duplicated sequence is adjacent to a member of the 152-bp repetitive sequence. In one instance two copies of the 152-bp repetitive sequence are separated by a 436-bp central region and are in an inverted orientation with respect to one another, resembling a compound transposable element.  相似文献   

14.
We have characterised from Xenopus laevis two new short interspersed repetitive elements, we have named Glider and Vision, that belong to the family of miniature inverted-repeat transposable elements (MITEs). Glider was first characterised in an intronic region of the α-tropomyosin (α-TM) gene and database search has revealed the presence of this element in 10 other Xenopus laevis genes. Glider elements are about 150 bp long and for some of them, their terminal inverted repeats are flanked by potential target-site duplications. Evidence for the mobility of Glider element has been provided by the presence/absence of one element at corresponding location in duplicated α-TM genes. Vision element has been identified in the promoter region of the cyclin dependant kinase 2 gene (cdk2) where it is boxed in a Glider element. Vision is 284 bp long and is framed by 14-bp terminal inverted repeats that are flanked by 7-bp direct repeats. We have estimated that there are about 20,000 and 300 copies of Glider and Vision respectively scattered throughout the laevis genome. Every MITEs elements but two described in our study are found either in 5′ or in 3′ regulatory regions of genes suggesting a potential role in gene regulation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
 The molecular mechanism leading to the imprinted expression of genes is poorly understood. While no conserved cis-acting elements have been identified within the known loci, many imprinted genes are located near directly repetitive sequence elements, suggesting that such repeats might play a role in imprinted gene expression. The maternally expressed mouse H19 gene is located approximately 1.5 kb downstream from a 461-bp G-rich repetitive element. We have used a transgenic model to investigate whether this element is essential for H19 imprinting. Previous results demonstrated that a transgene, which contains 14 kb of H19 sequence, exhibits parent-of-origin specific expression and methylation analogous to the endogenous H19 imprinting pattern. Here, we have generated transgenes lacking the G-rich repeat. One transgene, containing a deletion of the G-rich repetitive element but which includes an additional 1.7 kb of 5’H19 sequence, is imprinted similarly to the endogenous H19 gene. To determine whether the G-rich repeat is conserved in other imprinted mammalian H19 homologues, additional 5’ flanking sequences were cloned from the rat and human. This element is conserved in the rat but not in human DNA. These results suggest that the 461-bp G-rich repetitive element is not essential for H19 imprinting. Received: 26 August 1998 / Accepted: 14 December 1998  相似文献   

16.
Windsor AJ  Waddell CS 《Genetics》2000,156(4):1983-1995
A new family of transposons, FARE, has been identified in Arabidopsis. The structure of these elements is typical of foldback transposons, a distinct subset of mobile DNA elements found in both plants and animals. The ends of FARE elements are long, conserved inverted repeat sequences typically 550 bp in length. These inverted repeats are modular in organization and are predicted to confer extensive secondary structure to the elements. FARE elements are present in high copy number, are heterogeneous in size, and can be divided into two subgroups. FARE1's average 1.1 kb in length and are composed entirely of the long inverted repeats. FARE2's are larger, up to 16.7 kb in length, and contain a large internal region in addition to the inverted repeat ends. The internal region is predicted to encode three proteins, one of which bears homology to a known transposase. FARE1.1 was isolated as an insertion polymorphism between the ecotypes Columbia and Nossen. This, coupled with the presence of 9-bp target-site duplications, strongly suggests that FARE elements have transposed recently. The termini of FARE elements and other foldback transposons are imperfect palindromic sequences, a unique organization that further distinguishes these elements from other mobile DNAs.  相似文献   

17.
18.
A new family of centromeric highly repetitive DNA sequences was isolated from EcoRI-digested genomic DNA of the blue-breasted quail (Coturnix chinensis, Galliformes), and characterized by filter hybridization and chromosome in situ hybridization. The repeated elements were divided into two types by nucleotide length and chromosomal distribution; the 578-bp element predominantly localized to microchromosomes and the 1,524-bp element localized to chromosomes 1 and 2. The 578-bp element represented tandem arrays and did not hybridize to genomic DNAs of other Galliformes species, chicken (Gallus gallus), Japanese quail (Coturnix japonica) and guinea fowl (Numida meleagris). On the other hand, the 1,524-bp element was not organized in tandem arrays, and did hybridize to the genomic DNAs of three other Galliformes species, suggesting that the 1,524-bp element is highly conserved in the Galliformes. The 578-bp element was composed of basic 20-bp internal repeats, and the consensus nucleotide sequence of the internal repeats had homologies to the 41-42 bp CNM repeat and the XHOI family repeat of chicken. Our data suggest that the microchromosome-specific highly repetitive sequences of the blue-breasted quail and chicken were derived from a common ancestral sequence, and that they are one of the major and essential components of chromosomal heterochromatin in Galliformes species.  相似文献   

19.
Hasebe A  Iida S 《Plasmid》2000,44(1):44-53
Three insertion sequences, IS1417, IS1418, and IS1419, were isolated from Burkholderia glumae (formerly Pseudomonas glumae), a gram-negative rice pathogenic bacterium, on the basis of their abilities to activate the expression of the neo gene of the entrap vector pSHI1063. The 1335-bp IS1417 element with 17-bp imperfect terminal inverted repeats was found to be flanked by 5-bp direct repeats of the vector sequence. IS1418 is 865 bp in length and carries 15-bp inverted repeats with a target duplication of 3 bp. The 1215-bp IS1419 sequence is bounded by the 36-bp terminal inverted repeats of the element and 7-bp direct repeats of the vector sequence. IS1417 and IS1418 belong to the IS2 subgroup of the IS3 family and the IS427 subgroup of the IS5 family, respectively, whereas IS1419 does not appear to be a member of any known IS family. Southern blot analysis of DNAs from B. glumae field isolates indicated that those IS elements are widely distributed, but the host range of the three IS elements appears to be limited to B. glumae and some other related species such as B. plantarii. The polymorphisms exhibited in B. glumae isolates suggest that those elements are useful for molecular epidemiological studies of B. glumae infections.  相似文献   

20.
Summary The Robertson's Mutator stock of maize exhibits a high mutation rate due to the transposition of theMu family of transposable elements. All characterizedMu elements contain similar 200-bp terminal inverted repeats, yet the internal sequences of the elements may be completely unrelated. Non-Mutator stocks of maize have a 20–100-fold lower mutation rate relative to Mutator stocks, yet they contain multiple sequences that hybridize to theMu terminal inverted repeats. Most of these sequences do not cohybridize to internal regions of previously clonedMu elements. We have cloned two such sequences from the maize line B37, a non-Mutator inbred line. These sequences, termedMu4 andMu5, have an organization characteristic of transposable elements and possess 200-bpMu terminal inverted repeats that flank internal DNA, which is unrelated to other clonedMu elements.Mu4 andMu5 are both flanked by 9-bp direct repeats as has been observed for otherMu elements. However, we have no direct evidence that they have recently transposed because they have not been found in known genes. Although the internal regions ofMu4 andMu5 are not related by sequence similarity, both elements share an unusual structural feature: the terminal inverted repeats extend more than 100 bp internally fromMu-similar termini. The distribution of these elements in maize lines and related species suggests thatMu elements are an ancient component of the maize genome. Moreover, the structure of theMu termini and the fact thatMu termini are found flanking different internal sequences leads us to speculate thatMu termini once may have been capable of transposing as independent entities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号