首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract The sat 4 streptothricin resistance gene from Campylobacter coli BE/G4 was cloned into pUC18, and its nucleotide sequence was determined. Streptothricin acetyltransferase activity was detected in Escherichia coli cells containing recombinant plasmid pAT132 which carries the sat4 gene as an insert. The deduced amino acid sequence displayed 21–27% amino acid identity with streptothricin acetyltransferases from E. coli and streptothricin producers Streptomyces lavendulae and Streptomyces noursei . The sat 4 gene was detected by hybridization in clinical and environmental isolates of Campylobacter spp.  相似文献   

2.
Concerns have been raised about potential horizontal gene transfer (HGT) of antibiotic resistance markers (ARMs) from transgenic plants to bacteria of medical and environmental importance. All ARMs used in transgenic plants have been bacterial in origin, but it has been recently shown that an Arabidopsis thaliana ABC transporter, Atwbc19, confers kanamycin resistance when overexpressed in transgenic plants. Atwbc19 was evaluated for its ability to transfer kanamycin resistance to Escherichia coli, a kanamycin‐sensitive model bacterium, under simulated HGT, staged by subcloning Atwbc19 under the control of a bacterial promoter, genetically transforming to kanamycin‐sensitive bacteria, and assessing if resistance was conferred as compared with bacteria harbouring nptII, the standard kanamycin resistance gene used to produce transgenic plants. NptII provided much greater resistance than Atwbc19 and was significantly different from the no‐plasmid control at low concentrations. Atwbc19 was not significantly different from the no‐plasmid control at higher concentrations. Even though HGT risks are considered low with nptII, Atwbc19 should have even lower risks, as its encoded protein is possibly mistargeted in bacteria.  相似文献   

3.
Total ambient mercury concentrations and numbers of mercury resistant, aerobic heterotrophic bacteria at six locations in Chesapeake Bay were monitored over a 17 month period. Mercury resistance expressed as the proportion of the total, viable, aerobic, heterotrophic bacterial population reached a reproducible maximum in spring and was positively correlated with dissolved oxygen concentration and sediment mercury concentration and negatively correlated with water turbidity. A relationship between mercury resistance and metabolic capability for reduction of mercuric ion to the metallic state was established by surveying a number of HgCl2-resistant cultures. The reaction was also observed in microrganisms isolated by differential centrifugation of water and sediment samples. Mercuric ion exhibited an average half-life of 12.5 days in the presence of approximately 105 organisms/ml. Cultures resistant to 6 ppm of mercuric chloride and 3 ppm of phenylmercuric acetate (PMA) were classified into eight generic categories.Pseudomonas spp. were the most numerous of those bacteria capable of metabolizing both compounds; however, PMA was more toxic and was more selective forPseudomonas. The mercury-resistant generic distribution was distinct from that of the total bacterial generic distribution and differed significantly between water and sediment, positionally and seasonally. The proportion of nonglucose-utilizing mercury-resistantPsuedomonas spp. was found to be positively correlated with total bacterial mercury resistance. It is concluded from this study that numbers of mercury-resistant bacteria as established by plate count can serve as a valid index ofin situ Hg2+ metabolism.  相似文献   

4.
Aeromonas spp. are associated with seafood-related outbreaks worldwide. In seafood industry, shellfish play a major role in global seafood production. With this emerging trend of shellfish consumption, shellfish-related bacterial infections are being reported frequently. Aeromonas spp. are natural contaminants found in shellfish. Although 36 species have been identified, some species including Aeromonas hydrophila, Aeromonas caviae and Aeromonas veronii biotype sobria have dragged major attention as foodborne pathogenic bacteria. The ability to elaborate a variety of virulence factors of Aeromonas spp. contributes to the pathogenic activities. Also, emerging antimicrobial resistance in Aeromonas spp. has become a huge challenge in seafood industry. Furthermore, multidrug resistance increases the risk of consumer health. Studies have supplied pieces of evidence about the emerging health risk of Aeromonas spp. isolated from seafood. Therefore, the present review was intended to highlight the prevalence, virulence and antimicrobial resistance of Aeromonas spp. isolated from various types of shellfish.  相似文献   

5.
From the guts of new and old colonies (female and male) of Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae), we identified a total of 18 different bacterial species belonging to the family Enterobacteriaceae, Pseudomonadaceae, Vibrionaceae, Micrococcaceae, Deinococcacea, Bacillaceae, and the genus Listeria. Enterobacter, Providencia, Serratia, and Staphylococcus spp. were the most frequently isolated genera, with Citrobacter, Streptococcus, Aerococcus, and Listeria found less frequently. We found Bacillus cereus, Enterobacter sakazakii, Providencia stuartii, and Pseudomonas aeruginosa only in the new colony, Aeromonas hydrophila and Klebsiella pneumoniae spp. pneumoniae only in the old colony. We also studied resistance/sensitivity to 12 antibiotics for six bacterial isolates such as Enterobacter cloacae, E. sakazakii, K. pneumoniae spp., Providencia rettgeri, P. aeruginosa, and Bacillus cereus. Isolates on the whole were resistant to penicillin and ampicillin (five of six isolates) and sensitive to rifampin and streptomycin (six of six isolates). Antibiotic resistance profiles might be useful characteristics for distinguishing among species and strains of these bacteria, probably having ecological significance with respect to intra- and inter-specific competition within host cadavers, and could have implications for the utility of these organisms for biological control, including the alternative control strategy, paratransgenesis. Received: 28 August 2000 / Accepted: 2 October 2000  相似文献   

6.
7.
Aims: To study streptomycin‐resistant bacteria isolated from Jiaozhou Bay and their molecular determinants of resistance. Methods and Results: Twenty‐seven tetracycline‐resistant and 49 chloramphenicol‐resistant bacterial isolates from surface seawater of Jiaozhou Bay were selected for investigation. More than 88% of these isolates were resistant to streptomycin. Half of the streptomycin‐resistant bacteria harboured the strA–strB gene pair, and six isolates carried Tn5393‐like transposons by PCR detection. The p9123‐related plasmids containing the sul2–strA–strB gene cluster were characterized in two environmental Escherichia coli isolates. Transposon Tn5393 was first identified on a Klebsiella pneumoniae plasmid, which also carried Tn1721, estP and umu genes responsible for antimicrobial and insecticide resistance. Conclusions: Coresistance to streptomycin and tetracycline or chloramphenicol was found with high frequency. p9123‐related plasmid and Tn5393 transposon may contribute to the wide distribution and spread of the strA–strB gene pair in Jiaozhou Bay. The detection of streptomycin‐resistance plasmid pQ1‐1 from Jiaozhou Bay seawater bacteria and human bacterial pathogens from USA indicates its global dissemination and transmission, across different components of the microbiota on earth. Significance and Impact of the Study: Streptomycin resistance can be recognized as an important bioindicator of environmental quality, owing to its association with anthropogenic pollution and the multidrug‐resistant microbiota.  相似文献   

8.
Gene transfer within bacterial communities has been recognized as a major contributor in the recent evolution of antibiotic resistance on a global scale. The linked strA-strB genes, which encode streptomycin-inactivating enzymes, are distributed worldwide and confer streptomycin resistance in at least 17 genera of gram-negative bacteria. Nucleotide sequence analyses suggest that strA-strB have been recently disseminated. In bacterial isolates from humans and animals, strA-strB are often linked with the sulII sulfonamide-resistance gene and are encoded on broad-host-range nonconjugative plasmids. In bacterial isolates from plants, strA-strB are encoded on the Tn3-type transposon Tn5393 which is generally borne on conjugative plasmids. The wide distribution of the strA-strB genes in the environment suggests that gene transfer events between human, animal, and plant-associated bacteria have occurred. Although the usage of streptomycin in clinical medicine and animal husbandry has diminished, the persistence of strA-strB in bacterial populations implies that factors other than direct antibiotic selection are involved in maintenance of these genes.  相似文献   

9.
Aims: As biowaste intended for biogas production can contain pathogenic micro‐organisms, the recommended treatment is pasteurization at 70°C for 60 min. This reduces pathogens such as Salmonella spp., whereas spore‐forming bacteria (Bacillus spp. and Clostridium spp.) survive. Most spore‐forming bacteria are harmless, but some can cause diseases such as blackleg, botulism and anthrax. In this study, the effect of the biogas process on Bacillus spp. and Clostridium spp. was investigated. Methods and Results: We analysed 97 faecal samples, 20 slaughterhouse waste samples and 60 samples collected at different stages in the biogas process. Bacillus spp. and Clostridium spp. were quantified and subcultured. The isolates were identified by biochemical methods and by 16S rRNA gene sequencing. Phylogenetic trees were constructed from the sequences obtained from isolates from the samples. Clostridium botulinum/Clostridium spp. and Clostridium sordellii were found both before and after pasteurization, but not after digestion (AD). Some of the isolated strains probably represented new members of the genera Clostridium and Bacillus. Conclusion: After digestion, the numbers of clostridia decreased, but none of the pathogenic bacteria did, whereas Bacillus spp. remained constant during the process. Significance and Impact of the Study: Biogas is gaining in importance as an energy source and because the residues are used as fertilizers, we needed to study the prevalence of pathogenic bacteria in such material.  相似文献   

10.
Targeting of non‐phagocytic tumor cells and prompt release of gene cargos upon entry into tumors are two limiting steps in the bacterial gene delivery path. To tackle these problems, the non‐pathogenic Escherichia coli strain BL21(DE3) was engineered to display the anti‐HER2/neu affibody on the surface. After co‐incubation with tumor cells for 3 h, the anti‐HER2/neu affibody‐presenting E. coli strain was selectively internalized into HER2/neu‐positive SKBR‐3 cells. The invasion efficiency reached as high as 30%. Furthermore, the bacteria were equipped with the phage ϕX174 lysin gene E‐mediated autolysis system. Carrying the transgene (e.g., eukaryotic green fluorescent protein, GFP), the tumor‐targeting bacteria were subjected to the thermal shock to trigger the autolysis system upon entry into HER2/neu‐positive cells. Flow cytometric analysis revealed that 3% of infected cells expressed GFP 24 h post thermal induction. Overall, the results show a promise of the proposed approach for developing bacteria as a delivery carrier. Biotechnol. Bioeng. 2011; 108:1662–1672. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
Aims: Temperate bacteriophages are bacterial viruses that transfer genetic information between bacteria. This phenomenon is known as transduction, and it is important in acquisition of bacterial virulence genes and antimicrobial resistance determinants. The aim of this study was to demonstrate the role of bacteriophages in gene transfer (antibiotic resistance) in enterococci. Methods and Results: Three bacteriophages from environmental samples isolated on pig host strains of Enterococcus gallinarum and Enterococcus faecalis were evaluated in transduction experiments. Antibiotic resistance was transferred from Ent. gallinarum to Ent. faecalis (tetracycline resistance) and from Ent. faecalis to Enterococcus faecium, Enterococcus hirae/durans and Enterococcus casseliflavus (gentamicin resistance). Conclusions: Bacteriophages play a role in transfer of antibiotic resistance determinants in enterococci. Significance and Impact of the Study: This study confirms previous suggestions on transduction in enterococci, in particular on interspecies transduction. Interspecies transduction is significant because it widens the range of recipients involved in antimicrobial resistance transfer.  相似文献   

12.
The transferability of the tetracycline (TC) resistance gene tet(M) from marine bacteria to human enteric bacteria was examined by a filter-mating method. Vibrio spp., Lactococcus garvieae, Bacillus spp., Lactobacillus sp., and Paenibacillus sp. were used as donors, and Escherichia coli JM109 and Enterococcus faecalis JH2-2 were used as recipients. The combination of Vibrio spp. and E. coli resulted in 5/68 positive transconjugants with a transfer rate of 10−7 to 10−3; however, no transfer was observed with E. faecalis. In case of L. garvieae and E. faecalis, 6/6 positive transconjugants were obtained with a transfer rate of 10−6 to 10−5; however, no transfer was observed with E. coli. The tet(M) gene of Bacillus, Lactobacillus, and Paenibacillus were not transferred to either E. coli or E. faecalis. tet(M) transfer was confirmed in positive E. coli and E. faecalis transconjugants by polymerase chain reaction (PCR) and Southern hybridization. All the donor strains did not harbor plasmids, while they all harbored transposon Tn916. In the transconjugants, the transposon was not detected by PCR, suggesting the possible transfer of tet(M) from the marine bacterial chromosome to the recipient chromosome. This is the first report to show that tet(M) can be transferred from marine bacteria to human enteric bacteria in a species-specific manner.  相似文献   

13.
Aeromonas spp. are ubiquitous bacteria that cause diseases in fish and other aquatic animals. They are the natural inhabitants of different aquatic environments, such as freshwater, brackishwater and marinewater. Extrinsic stressors, such as crowding, unhygienic handling, poor water quality, polluted feeding and inadequate nutrition, can predispose fish to Aeromonas infection. In ornamental fish, motile Aeromonas spp. are known as aetiological agents of motile aeromonad infections, which cause significant mortality in fish and economic loss in the ornamental fish industry. The existence of different virulence factors leads to the virulence potential of motile Aeromonas spp. There are several antimicrobials used to treat bacterial infections in ornamental fish. However, the extensive use of antimicrobials in the ornamental fish industry causes multidrug resistance. This article reviewed a multitude of virulence factors that are related to the ornamental fish-borne Aeromonas pathogenicity and the antimicrobial resistance determinants related to the multidrug resistance phenotypes of motile Aeromonas spp. in ornamental fish.  相似文献   

14.

Background

A multicenter study was conducted to evaluate the diagnostic accuracy (sensitivity and specificity) of the Verigene Gram-Positive Blood Culture Test (BC-GP) test to identify 12 Gram-positive bacterial gene targets and three genetic resistance determinants directly from positive blood culture broths containing Gram-positive bacteria.

Methods and Findings

1,252 blood cultures containing Gram-positive bacteria were prospectively collected and tested at five clinical centers between April, 2011 and January, 2012. An additional 387 contrived blood cultures containing uncommon targets (e.g., Listeria spp., S. lugdunensis, vanB-positive Enterococci) were included to fully evaluate the performance of the BC-GP test. Sensitivity and specificity for the 12 specific genus or species targets identified by the BC-GP test ranged from 92.6%–100% and 95.4%–100%, respectively. Identification of the mecA gene in 599 cultures containing S. aureus or S. epidermidis was 98.6% sensitive and 94.3% specific compared to cefoxitin disk method. Identification of the vanA gene in 81 cultures containing Enterococcus faecium or E. faecalis was 100% sensitive and specific. Approximately 7.5% (87/1,157) of single-organism cultures contained Gram-positive bacteria not present on the BC-GP test panel. In 95 cultures containing multiple organisms the BC-GP test was in 71.6% (68/95) agreement with culture results. Retrospective analysis of 107 separate blood cultures demonstrated that identification of methicillin resistant S. aureus and vancomycin resistant Enterococcus spp. was completed an average of 41.8 to 42.4 h earlier using the BC-GP test compared to routine culture methods. The BC-GP test was unable to assign mecA to a specific organism in cultures containing more than one Staphylococcus isolate and does not identify common blood culture contaminants such as Micrococcus, Corynebacterium, and Bacillus.

Conclusions

The BC-GP test is a multiplex test capable of detecting most leading causes of Gram-positive bacterial blood stream infections as well as genetic markers of methicillin and vancomycin resistance directly from positive blood cultures. Please see later in the article for the Editors'' Summary  相似文献   

15.
The number Escherichia coli containing the porcine somatotropin (pST) gene cloned into plasmid pBR322 recovered from a laboratory-scale waste treatment microcosm decreased over a period of several days following their introduction. The pST gene was detected by hybridization analysis in these bacteria when recovered from authentic wastewater at 72 h after introduction, but the gene was not detected in bacteria recovered at 144 h. No significant difference in recovery, as judged by auxotrophic and antibiotic-resistance markers, was noted between the pST-containing strain and an isogenic E. coli without pST, indicating that presence of the pST gene confers no survival advantage or disadvantage on the bacterial host.  相似文献   

16.
Aims: To assess the diversity and antimicrobial activity of culturable bacteria associated with two temperate‐water marine sponges, Amphilectus fucorum and Eurypon major. Methods and Results: Sponge samples were collected in August 2008 and bacteria were cultured on several different media. The 16S rRNA gene of representative strains was sequenced to allow classification. It was found that Proteobacteria were the dominant group of bacteria cultured from both sponges, but overall, the bacterial composition was diverse and distinct between the sponges. The most notable features were the significantly higher proportion of firmicutes in E. major and the low frequency of actinobacteria in both sponges. Four bacterial isolates were identified as potentially novel species and will be characterised in future studies. Approximately 400 cultured bacteria were screened for antimicrobial activity against a collection of indicator strains, with only eight strains, all Pseudovibrio spp., displaying any such activity. These strains were active against Escherichia coli and Bacillus subtilis but not Staphylococcus aureus or a selection of fungal strains. Conclusions: Diverse and distinct populations of culturable bacteria are present in the coastal sponges A. fucorum and E. major. Only a minority of isolates produce antibacterial metabolites in culture, but this activity is common in Pseudovibrio spp. Significance and Impact of the Study: This study illustrates the diversity of sponge‐associated bacteria and the need to increase our knowledge about the function of these symbiotic bacteria. The data suggest that production of antibacterial metabolites is restricted to a subset of species, with the majority involved in other functions. The importance of Pseudovibrio as a reservoir of antibacterial metabolites is also highlighted.  相似文献   

17.
Aims: The goal of this study was to determine the antimicrobial susceptibility of bacteria isolated from three municipal wastewater treatment plants. Methods and Results: Numerous bacterial strains were isolated from three municipal wastewater treatment facilities on tetracycline‐ (n = 164) and ciprofloxacin‐amended (n = 65) growth media. These bacteria were then characterized with respect to their resistance to as many as 10 different antimicrobials, the presence of 14 common genes that encode resistance to tetracycline, the presence of integrons and/or the ability to transfer resistance via conjugation. All of the characterized strains exhibited some degree of multiple antimicrobial resistance, with nearly 50% demonstrating resistance to every antimicrobial that was tested. Genes encoding resistance to tetracycline were commonly detected among these strains, although intriguingly the frequency of detection was slightly higher for the bacteria isolated on ciprofloxacin‐amended growth media (62%) compared to the bacteria isolated on tetracycline‐amended growth media (53%). Class 1 integrons were also detected in 100% of the queried tetracycline‐resistant bacteria and almost half of the ciprofloxacin‐resistant strains. Conjugation experiments demonstrated that at least one of the tetracycline‐resistant bacteria was capable of lateral gene transfer. Conclusions: Our results demonstrate that multiple antimicrobial resistance is a common trait among tetracycline‐resistant and ciprofloxacin‐resistant bacteria in municipal wastewater. Significance and Impact of the Study: These organisms are potentially important in the proliferation of antimicrobial resistance because they appear to have acquired multiple genetic determinants that confer resistance and because they have the potential to laterally transfer these genetic determinants to strains of clinical importance.  相似文献   

18.
Aims: This study aimed at surveying prevalence of oxytetracycline (OTC)‐resistant bacteria in the white‐leg shrimp Litopenaeus vannamei, and the black tiger shrimp Penaeus monodon, intensively cultured in Thailand. We investigated the phylogenetic diversity of the bacterial isolates, as well as the minimum inhibitory concentration (MIC) of OTC, the occurrence of major OTC‐resistant genes and multiple‐antibiotic resistance in the isolates. Methods and Results: Shrimps were collected from culture ponds, and the homogenates of whole bodies were plated on tryptic soy agar supplemented with or without OTC. Percentages of OTC‐resistant bacteria were 0·3–52·1% in white‐leg samples and 0·008–22·3% in black tiger samples. Analyses of 16S rDNA sequences indicated that most OTC‐resistant isolates were closely related to Aeromonas spp. and Lactococcus garvieae. MICs of OTC were 4–128 μg ml?1 in the OTC‐resistant aeromonads and 128–256 μg ml?1 in OTC‐resistant L. garvieae. OTC resistance was found to be conferred by the genes tet(A), tet(C), tet(D), tet(E), tet(M) and tet(S), detected either singly or in pairs. No resistance to ceftazidime, imipenem or chloramphenicol was observed in any isolate. Conclusions: Both species of shrimp are associated with OTC‐resistant bacteria, occasionally at high densities exceeding 106 cfu g?1. The associated bacteria, predominantly Lactococcus and Aeromonas genera, are potential pathogens and are reservoirs of a variety of OTC‐resistant genes. Significance and Impact of the Study: Cultured shrimps can be vehicle to carry OTC‐resistant bacteria to domestic and foreign consumers via the food chain. Very low populations of OTC‐resistant bacteria observed in the several ponds suggest that levels of the resistant bacteria are artificially high and should be reduced in farmed shrimps.  相似文献   

19.
Marker exchange mutagenesis is a fundamental approach to understanding gene function at a molecular level in bacteria. New plasmids carrying a kanamycin resistance gene or a trimethoprim resistance gene were constructed to provide antibiotic resistance cassettes for marker exchange mutagenesis in Ralstonia solanacearum and many antibiotic-resistant Burkholderia spp. Insertion sequences present in the flanking sequences of the antibiotic resistance cassette were removed to prevent aberrant gene replacement and polar mutation during mutagenesis in wild-type bacteria. Plasmids provided in this study would be convenient for use in gene cassettes for gene replacement in other Gram-negative bacteria.  相似文献   

20.
《Autophagy》2013,9(2):288-289
Autophagy functions as a cell-autonomous effector mechanism of innate immunity by separating bacteria from cytosolic resources and delivering them for lysosomal destruction. How cytosolic bacteria are targeted for autophagy is incompletely understood. We recently discovered that Salmonella enterica serotype Typhimurium and Streptococcus pyogenes are detected by NDP52 (nuclear dot protein 52kDa), after these bacteria enter the cytosol of human cells and become decorated with poly-ubiquitinated proteins. NDP52 binds the bacterial ubiquitin coat as well as ATG8/LC3 and delivers cytosolic bacteria into autophagosomes. In the absence of NDP52 ubiquitin-coated bacteria accumulate outside ATG8/LC3+ autophagosomes. Cells lacking NDP52 fail to restrict bacterial proliferation, as do cells depleted of TBK1, an IKK family kinase colocalizing with NDP52 at the bacterial surface. Our findings demonstrate the existence of a receptor for the selective autophagy of cytosolic bacteria, suggesting that cells are able to differentiate between anti-bacterial and other forms of autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号