首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Danforth'sshort-tail (Sd) mouse is a semi-dominant mutation affecting the development of the vertebral column. Although the notochord degenerates completely by embryonic day 9.5, the vertebral column exists up to the lumber region, suggesting that the floor plate can substitute for notochord function. We previously established the mutant mouse line, Skt(Gt), through gene trap mutagenesis and identified the novel gene, Skt, which was mapped 0.95cM distal to the Sd locus. Taking advantage of the fact that monitoring notochordal development and genotyping of the Sd locus can be performed using the Skt(Gt) allele, we assessed the development of the vertebra, notochord, somite, floor plate and sclerotome in +-+/+-Skt(Gt), Sd-+/+-+, Sd-Skt(Gt)/+-+, Sd-Skt(Gt)/+-Skt(Gt), Sd-+/Sd-+ and Sd-Skt(Gt)/Sd-Skt(Gt) embryos. In Sd homozygous mutants with a C57BL/6 genetic background, the vertebral column was truncated in the 6th thoracic vertebra, which was more severe than previously reported. The floor plate and sclerotome developed to the level of somite before notochord degeneration and the number of remaining vertebrae corresponded well with the level of development of the floor plate and sclerotome. Defects to the sclerotome and subsequent vertebral development were not due to failure of somitogenesis. Taken together, these results suggest that the notochord induced floor plate development before degeneration, and that the remaining floor plate is sufficient for maintenance of differentiation of the somite into the sclerotome and vertebra in the absence of the notochord.  相似文献   

2.
The segmental body plan of vertebrates arises from the metameric organization of the paraxial mesoderm into somites. Each mesodermal somite is subdivided into at least two distinct domains: rostral and caudal. The segmental pattern of dorsal root ganglia, sympathetic ganglia and nerves is imposed by differential properties of either somitic domain. In the present work, we have extended these studies by investigating the contribution of rostral or caudal-half somites to vertebral development using grafts of multiple somite halves. In both rostral and caudal somitic implants, the grafted mesoderm dissociates normally into sclerotome and dermomyotome, and the sclerotome further develops into vertebrae. However, the morphogenetic capabilities of each somitic half differ. The pedicle of the vertebral arch is almost continuous in caudal half-somite grafts and is virtually absent in rostral half-somite implants. Similarly, the intervertebral disk is present in rostral half-somite chimeras, and much reduced or virtually absent in caudal somite chimeras. Thus, only the caudal half cells are committed to give rise to the vertebral pedicle, and only the rostral half cells are committed to give rise to the fibrocartilage of the intervertebral disk. Each vertebra is therefore composed of a pedicle-containing area, apparently formed by the caudal half-somite, followed by a pedicle-free zone, the intervertebral foramen, derived from the rostral somite. These data directly support the hypothesis of resegmentation, in which vertebrae arise by fusion of the caudal and rostral halves of two consecutive somites.  相似文献   

3.
4.
The development of patterned axon outgrowth and dorsal root ganglion (DRG) formation was examined after partially or totally removing chick somitic mesoderm. Since the dermamyotome is not essential and a full complement of limb muscles developed, alterations in neural patterns could be ascribed to deletion of sclerotome. When somitic tissue was completely removed, axons extended and DRG formed, but in an unsegmented pattern. Therefore the somite does not elicit outgrowth of axons or migration of DRG precursors, it is not a manditory substratum and it is not required for DRG condensation. These results suggest that posterior sclerotome is relatively inhibitory to invasion, an inhibition that is released when sclerotome is absent. When somites were partially deleted, axonal segmentation was not lost proportionally with the amount of sclerotome removed, suggesting that properties that may vary with sclerotome volume (such as diffusible cues) do not play a primary role. Instead, spinal nerves lost segmentation only when ventral sclerotome was deleted, regardless of whether dorsal sclerotome was or was not removed. This strongly suggests that axonal segmentation is imposed by direct interactions between growth cones and extracellular matrices or surfaces sclerotome cells. While DRG tended to be normally segmented when ventral sclerotome was deleted and to lose segmentation when dorsomedial sclerotome was absent, a coordinate loss of DRG segmentation with sclerotome volume could not be ruled out. However it is clear that axonal and DRG segmentation are independent. Observations on a subset of embryos in which the notochord was displaced relative to the spinal cord suggest that the ventromedial sclerotome surrounding the notochord inhibits axon advance. Posterior and ventromedial sclerotome are hypothesized to act as barriers to axon outgrowth due to some feature of their common cartilaginous development. Specific innervation patterns were also examined. When the notochord was displaced toward the control limb, axons on this side made and corrected projection errors, suggesting that the notochord can influence the precision of axonal pathway selection. In contrast, motor axons that entered the limb on all operated sides innervated muscle with their normal precision despite the absence of the somite and axonal segmentation. Therefore, the somite and the process of spinal nerve segmentation are largely irrelevant to the specificity of motoneuron projection.  相似文献   

5.
6.
Inductive signals from adjacent tissues initiate differentiation within the somite. In this study, we used mouse embryos mutant for the BMP antagonists noggin (Nog) and gremlin 1 (Grem1) to characterize the effects of BMP signaling on the specification of the sclerotome. We confirmed reduction of Pax1 and Pax9 expression in Nog mutants, but found that Nog;Grem1 double mutants completely fail to initiate sclerotome development. Furthermore, Nog mutants that also lack one allele of Grem1 exhibit a dramatic reduction in axial skeleton relative to animals mutant for Nog alone. By contrast, Pax3, Myf5 and Lbx1 expression indicates that dermomyotome induction occurs in Nog;Grem1 double mutants. Neither conditional Bmpr1a mutation nor treatment with the BMP type I receptor inhibitor dorsomorphin expands sclerotome marker expression, suggesting that BMP antagonists do not have an instructive function in sclerotome specification. Instead, we hypothesize that Nog- and Grem1-mediated inhibition of BMP is permissive for hedgehog (Hh) signal-mediated sclerotome specification. In support of this model, we found that culturing Nog;Grem1 double-mutant embryos with dorsomorphin restores sclerotome, whereas Pax1 expression in smoothened (Smo) mutants is not rescued, suggesting that inhibition of BMP is insufficient to induce sclerotome in the absence of Hh signaling. Confirming the dominant inhibitory effect of BMP signaling, Pax1 expression cannot be rescued in Nog;Grem1 double mutants by forced activation of Smo. We conclude that Nog and Grem1 cooperate to maintain a BMP signaling-free zone that is a crucial prerequisite for Hh-mediated sclerotome induction.  相似文献   

7.
The vertebrates are defined by their segmented vertebral column, and vertebral periodicity is thought to originate from embryonic segments, the somites. According to the widely accepted 'resegmentation' model, a single vertebra forms from the recombination of the anterior and posterior halves of two adjacent sclerotomes on both sides of the embryo. Although there is supporting evidence for this model in amniotes, it remains uncertain whether it applies to all vertebrates. To explore this, we have investigated vertebral patterning in the zebrafish. Surprisingly, we find that vertebral bodies (centra) arise by secretion of bone matrix from the notochord rather than somites; centra do not form via a cartilage intermediate stage, nor do they contain osteoblasts. Moreover, isolated, cultured notochords secrete bone matrix in vitro, and ablation of notochord cells at segmentally reiterated positions in vivo prevents the formation of centra. Analysis of fss mutant embryos, in which sclerotome segmentation is disrupted, shows that whereas neural arch segmentation is also disrupted, centrum development proceeds normally. These findings suggest that the notochord plays a key, perhaps ancient, role in the segmental patterning of vertebrae.  相似文献   

8.
Summary The distribution of sclerotome and neural crest cells of avian embryos was studied by light and electron microscopy. Sclerotome cells radiated from the somites towards the notochord, to occupy the perichordal space. Neural crest cells, at least initially, also entered cell-free spaces. At the cranial somitic levels they moved chiefly dorsal to the somites, favouring the rostral part of each somite. These cells did not approach the perichordal space. More caudally (i.e. trunk levels), neural crest cells initially moved ventrally between the somites and neural tube. Adjacent to the caudal half of each somite, these cells penetrated no further than the myosclerotomal border, but opposite the rostral somite half, they were found next to the sclerotome almost as far ventrally as the notochord. However, they did not appear to enter the perichordal space, in contrast to sclerotome cells.When tested in vitro, sclerotome cells migrated towards notochords co-cultured on fibronectin-rich extracellular material, and on collagen gels. In contrast, neural crest cells avoided co-cultured notochords. This avoidance was abolished by inclusion of testicular hyaluronidase and chondroitinase ABC in the culture medium, but not by hyaluronidase from Streptomyces hyalurolyticus. The results suggest that sclerotome and neural crest mesenchyme cells have a different distribution with respect to the notochord, and that differential responses to notochordal extracellular material, possibly chondroitin sulphate proteoglycan, may be responsible for this.  相似文献   

9.
The segmental pattern of peripheral ganglia in higher vertebrates is generated by interactions between neural crest and somite cells. Each mesodermal somite is subdivided into at least two distinct domains represented by its rostral and caudal halves. Most migratory pathways taken by neural crest cells in trunk regions of the axis, as well as the outgrowth of motoneuron fibers are restricted to the rostral domain of each somite. Experimental modification of the somites, achieved by constructing a mesoderm composed of multiple rostral half-somites, results in the formation of continuous and unsegmented nerves, dorsal root ganglia (DRG) and sympathetic ganglia (SG). In contrast, both neurites and crest cells are absent from a mesoderm composed of multiple-caudal half somites. However, the mechanisms responsible for gangliogenesis within the rostral half of the somite, appear to be different for DRG and SG. Vertebral development from the somites is also segmental. In implants of either multiple rostral or caudal somite-halves, the grafted mesoderm dissociates normally into sclerotome and dermomyotome. However, the morphogenetic capabilities of each somitic half differ. The lateral vertebral arch is continuous in the presence of caudal half-somite grafts and is virtually absent in rostral half-somite implants. Therefore, the rostrocaudal subdivision of the sclerotome determines the segmental pattern of neural development and is also important for the proper metameric development of the vertebrae.  相似文献   

10.
Chick embryonic motoneurons selectively grow out from the spinal cord as the first step of their selective axonal growth. In order to detect the molecules responsible for motoneuron outgrowth from the cord, we produced and immunohistochemically screened many monoclonal antibodies (MAbs) against cord and somite. We found that two of them, called M7412 and M7902, selectively bound to the cell surface of the anterior half of the sclerotome, where motoneurons selectively extend their axons. Immunohistochemistry and immunoblot results were identical for these antibodies and the antigen was called M7412 antigen. Although neural crest cells also migrate into the anterior half of the sclerotome, the expression of M7412 antigen by sclerotome cells was independent of the neural crest, because neural crest removal did not affect the appearance of the antigen. Furthermore, MAb M7412 bound to the mesenchymal cells along presumptive major nerve trunks in the limb and to the structures surrounding myotubes in muscles during the formation of intramuscular nerve branches. These results suggest that M7412 antigen might be a substrate for general, but not specific, growth of motoneuron axons. If this is the case, we must also infer that some molecule inhibitory for motoneuron growth is localized in the posterior half of sclerotome, because at upper cervical levels the M7412 antigen was also expressed intensely in the posterior sclerotome, whereas motoneurons still grew only into the anterior half. The M7412 antigen was transiently expressed in such various tissues as somite; muscles; blood vessels; spinal cord cells, especially motoneurons innervating the limb; and dorsal root and other peripheral ganglion cells. The M7412 antigenic molecule was extractable with NP40 from a membrane fraction of whole chick embryos and its molecular weight was estimated to be 70 kDa from immunoblot analysis. Thus, our monoclonal antibodies have revealed a new membrane-associated molecule which is likely to play a role in cell-cell interactions during development of motoneurons.  相似文献   

11.
12.
The traditional view that all parts of the ribs originate from the sclerotome of the thoracic somites has recently been challenged by an alternative view suggesting that only the proximal rib derives from the sclerotome, while the distal rib arises from regions of the dermomyotome. In view of this continuing controversy and to learn more about the cell interactions during rib morphogenesis, this study aimed to reveal the precise contributions made by somitic cells to the ribs and associated tissues of the thoracic cage. A replication-deficient lacZ-encoding retrovirus was utilized to label cell populations within distinct regions of somites 19-26 in stage 13-18 chick embryos. Analysis of the subsequent contributions made by these cells revealed that the thoracic somites are the sole source of cells for the ribs. More precisely, it is the sclerotome compartment of the somites that contributes cells to both the proximal and distal elements of the ribs, confirming the traditional view of the origin of the ribs. Results also indicate that the precursor cells of the ribs and intercostal muscles are intimately associated within the somite, a relationship that may be essential for proper rib morphogenesis. Finally, the data from this study also show that the distal ribs are largely subject to resegmentation, although cell mixing may occur at the most sternal extremities.  相似文献   

13.
We have repeated classic dorsoventral somite rotation experiments (Aoyama and Asamoto, 1988, Development 104, 15-28) and included dorsal and ventral gene expression markers for the somitogenic tissue types, myotome and sclerotome, respectively. While the histological results are consistent with those previously published, gene expression analysis indicates that cells previously thought to be 'sclerotome' no longer express Pax1 mRNA, a sclerotome marker. These results, together with recent quail-chick transplantation experiments indicating that even very late sclerotome tissue fragments are multipotential (Dockter and Ordahl, 1998, Development 125, 2113-2124), lead to the conclusion that sclerotome tissue remains phenotypically and morphogenetically plastic during early embryonic somitogenesis. Myotome precursor cells, by contrast, appear to be determined within hours after somite epithelization; a finding consistent with recent reports (Williams and Ordahl, 1997, Development 124, 4983-4997). Therefore, while these findings support a central conclusion of Aoyama and Asamoto, that axis determination begins to occur within hours after somite epithelialization, the identity of the responding tissues, myotome versus sclerotome, differs. A simple model proposed to reconcile these observations supports the general hypothesis that determinative aspects of early paraxial mesoderm growth and morphogenesis occur in early and late phases that are governed principally by the myotome and sclerotome, respectively.  相似文献   

14.
Effects of mesodermal tissues on avian neural crest cell migration   总被引:4,自引:0,他引:4  
We have used microsurgical techniques to investigate the effects of embryonic mesodermal tissues on the pattern of chick neural crest cell migration in the trunk. Segmental plate or lateral plate mesenchyme was transplanted into regions encountered by neural crest cells. We found that neural crest cells are able to migrate through lateral plate mesenchyme but not through segmental plate tissue until this tissue differentiates into a sclerotome. After this stage, segmental migration is controlled by the subdivision of the sclerotome into a rostral and a caudal half; when the rostrocaudal orientation of the sclerotomes is reversed by rotating the segmental plate 180 degrees about its rostrocaudal axis, neural crest cells migrate through the portion of the sclerotome that was originally rostral.  相似文献   

15.
Proper formation of the musculoskeletal system requires the coordinated development of the muscle, cartilage and tendon lineages arising from the somitic mesoderm. During early somite development, muscle and cartilage emerge from two distinct compartments, the myotome and sclerotome, in response to signals secreted from surrounding tissues. As the somite matures, the tendon lineage is established within the dorsolateral sclerotome, adjacent to and beneath the myotome. We examine interactions between the three lineages by observing tendon development in mouse mutants with genetically disrupted muscle or cartilage development. Through analysis of embryos carrying null mutations in Myf5 and Myod1, hence lacking both muscle progenitors and differentiated muscle, we identify an essential role for the specified myotome in axial tendon development, and suggest that absence of tendon formation in Myf5/Myod1 mutants results from loss of the myotomal FGF proteins, which depend upon Myf5 and Myod1 for their expression, and are required, in turn, for induction of the tendon progenitor markers. Our analysis of Sox5/Sox6 double mutants, in which the chondroprogenitors are unable to differentiate into cartilage, reveals that the two cell fates arising from the sclerotome, axial tendon and cartilage are alternative lineages, and that cartilage differentiation is required to actively repress tendon development in the dorsolateral sclerotome.  相似文献   

16.
1. Recent experiments on the development of neural segmentation in chick embryos are reviewed. 2. Segmentation of the spinal peripheral nerves is governed by a subdivision of the somite-derived sclerotome into anterior and posterior halves. Migrating neural crest cells and outgrowing motor axons are confined to the anterior sclerotome as a result, in part, of inhibitory interactions with posterior sclerotome cells. 3. The sclerotomal distribution of certain molecules known to influence growing nerve cells in vitro, namely laminin, fibronectin, N-CAM, N-Cadherin and J1/tenascin/cytotactin, suggest that these molecules play no critical role in determining the preference of nerve cells for anterior sclerotome. 4. Peanut agglutinin (PNA) recognises cell surface-associated components on posterior cells which, when incorporated into liposomes, cause the abrupt collapse of sensory growth cones in vitro. The PNA receptor(s) may be inhibitory for nerve cells in vivo. 5. The chick hindbrain epithelium is segmented early in its development. Each branchiomotor nucleus in the series of cranial nerves V, VII and IX derives from a pair of segments lying in register with an adjacent branchial arch. Neurogenesis of motor and reticular axons begins in alternate segments, suggesting parallels with insect pattern formation.  相似文献   

17.
This study was conducted to check whether the three chick Early B‐cell Factor (Ebf) genes, particularly cEbf1, would be targets for Shh and Bmp signals during somites mediolateral (ML) patterning. Tissue manipulations and gain and loss of function experiments for Shh and Bmp4 were performed and the results revealed that cEbf1 expression was initiated in the cranial presomitic mesoderm by low dose of Bmp4 from the lateral mesoderm and maintained in the ventromedial part of the epithelial somite and the medial sclerotome by Shh from the notochord; while cEbf2/3 expression was induced and maintained by Bmp4 and inhibited by high dose of Shh. To determine whether Ebf1 plays a role in somite patterning, transfection of a dominant‐negative construct was carried out; this showed suppression of cPax1 expression in the medial sclerotome and upregulation and medial expansion of cEbf3 and cPax3 expression in sclerotome and dermomyotome, respectively, suggesting that Ebf1 is important for ML patterning. Thus, it is possible that low doses of Bmp4 set up Ebf1 expression which, together with Shh from the notochord, leads to establishment of the medial sclerotome and suppression of lateral identities. These data also conclude that Bmp4 is required in both the medial and lateral domain of the somitic mesoderm to keep the ML identity of the sclerotome through maintenance of cEbf gene expression. These striking findings are novel and give a new insight on the role of Bmp4 on mediolateral patterning of somites.  相似文献   

18.
During axial skeleton development, the notochord is essential for the induction of the sclerotome and for the subsequent differentiation of cartilage forming the vertebral bodies and intervertebral discs. These functions are mainly mediated by the diffusible signaling molecule Sonic hedgehog. The products of the paired-box-containing Pax1 and the mesenchyme forkhead-1 (Mfh1) genes are expressed in the developing sclerotome and are essential for the normal development of the vertebral column. Here, we demonstrate that Mfh1 like Pax1 expression is dependent on Sonic hedgehog signals from the notochord, and Mfh1 and Pax1 act synergistically to generate the vertebral column. In Mfh1/Pax1 double mutants, dorsomedial structures of the vertebrae are missing, resulting in extreme spina bifida accompanied by subcutaneous myelomeningocoele, and the vertebral bodies and intervertebral discs are missing. The morphological defects in Mfh1/Pax1 double mutants strongly correlate with the reduction of the mitotic rate of sclerotome cells. Thus, both the Mfh1 and the Pax1 gene products cooperate to mediate Sonic hedgehog-dependent proliferation of sclerotome cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号