首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rhizobium leguminosarum biovar viciae nodulation protein NodO is partially homologous to haemolysin of Escherichia coli and, like haemolysin, is secreted into the growth medium. The NodO protein can be secreted by a strain of E. coli carrying the cloned nodO gene plus the haemolysin secretion genes hlyBD, in a process that also requires the outer membrane protein encoded by tolC. The related protease secretion genes, prtDEF, from Erwinia chrysanthemi also enable E. coli to secrete NodO. The Rhizobium genes encoding the proteins required for NodO secretion are unlinked to nodO and are unlike other nod genes, since they do not require flavonoids or NodO for their expression. Although proteins similar to NodO were not found in rhizobia other than R. leguminosarum bv. viciae, several rhizobia and an Agrobacterium strain containing the cloned nodO gene were found to have the ability to secrete NodO. These observations indicate that a wide range of the Rhizobiaceae have a protein secretion mechanism analogous to that which secretes haemolysin and related toxins and proteases in the ENterobacteriaceae.  相似文献   

2.
Nodulation and host-specific recognition of legumes such as peas and Vicia spp. are encoded by the nodulation (nod) genes of Rhizobium leguminosarum biovar viciae. One of these genes, nodO, has been shown to encode an exported protein that contains a multiple tandem repeat of a nine amino acid domain. This domain was found to be homologous to repeated sequences in a group of bacterial exported proteins that includes haemolysin, cyclolysin, leukotoxin and two proteases. These proteins are secreted by a mechanism that does not involve an N-terminal signal peptide. The NodO protein is present in the growth medium of Rhizobium bacteria induced for nod gene expression, and partial protein sequencing of the purified protein showed that there is no N-terminal cleavage of the exported protein. It has been suggested that the internally repeated domain of haemolysin may be involved in Ca2(+)-mediated binding to erythrocytes and we show that the NodO protein can bind 45Ca2+. It is proposed that the NodO protein may interact directly with plant root cells in a Ca2(+)-dependent way, thereby mediating an early stage in the recognition that occurs between Rhizobium and its host legume.  相似文献   

3.
4.
5.
A testis-specific gene Tpx-1, located between Pgk-2 and Mep-1 on mouse chromosome 17, was isolated from a cosmid clone, and its cDNA sequences were determined. The predicted coding sequence of Tpx-1 isolated from BALB/c mice showed 64.2% nucleotide and 55.1% amino acid sequence similarity with that of a rat sperm-coating glycoprotein gene, the protein product of which is secreted by the epididymis. To examine the evolutionary relationship between Tpx-1 and a sperm-coating glycoprotein gene, the cDNA sequence of TPX1, the human counterpart of Tpx-1, was determined. The comparison of the predicted coding sequences of Tpx-1 and TPX1 showed 77.8% nucleotide and 70% amino acid sequence similarity. Since Tpx-1 (from mouse) is more similar to TPX1 (from man) than it is to a rat sperm-coating glycoprotein gene, we conclude that Tpx-1 (TPX1) and a sperm-coating glycoprotein gene are closely related, but distinct, genes belonging to the same gene family. The predicted Tpx-1 protein of a t mutant mouse CRO437 differs from that of BALB/c mice by one amino acid insertion in the putative signal peptide. TPX1 was mapped to 6p21-qter by Southern blot analysis of interspecies somatic hybrid cell lines.  相似文献   

6.
Microcin B17 is a low-molecular-weight protein that inhibits DNA replication in a number of enteric bacteria. It is produced by bacterial strains which harbor a 70-kilobase plasmid called pMccB17. Four plasmid genes (named mcbABCD) are required for its production. The product of the mcbA gene was identified by labelling minicells. The mcbA gene product was slightly larger when a mutation in any of the other three production genes was present. This indicates that these genes are involved in processing the primary mcbA product to yield the active molecule. The mcbA gene product predicted from the nucleotide sequence has 69 amino acids including 28 glycine residues. Microcin B17 was extracted from the cells by boiling in 100 mM acetic acid, 1 mM EDTA, and purified to homogeneity in a single step by high-performance liquid chromatography through a C18 column. The N-terminal amino acid sequence and amino acid composition demonstrated that mcbA is the structural gene for microcin B17. The active molecule is a processed product lacking the first 26 N-terminal residues. The 43 remaining residues include 26 glycines. While microcin B17 is an exported protein, the cleaved N-terminal peptide does not have the characteristic properties of a "signal sequence", which suggests that it is secreted by a mechanism different from that used by most secreted proteins of E. coli.  相似文献   

7.
A 1.7 kilobase HindIII fragment of Saccharomyces cerevisiae DNA was cloned by cross-hybridization with the Escherichia coli secY gene. The complete nucleotide sequence of the 2.6 kb fragment of the yeast genomic DNA containing the cross-hybridizing HindIII fragment was determined. The sequence showed no apparent similarity with that of the E. coli secY gene with the exception of a completely matched sequence of 21 bp, but it contained a 1,623 nucleotide open reading frame coding for a protein of 541 amino acids with a calculated Mr of 59,600. The N-terminal portion of 303 residues of the predicted sequence was homologous to the cytosolic domain of the alpha-subunit of the signal recognition particle receptor (SR alpha), including consensus sequence elements for a GTP binding site, whereas the C-terminal portion of 238 residues had an unusual methionine-rich domain containing several repetitive sequences. An mRNA of 2.0 kb was detected on Northern blotting analysis. The predicted sequence was 48% identical with the reported sequences of the 54K subunit of the mammalian signal recognition particle (SRP54) (Romisch K. et al. (1989) Nature 340, 478-483; Bernstein, H.D. et al. (1989) Nature 340, 482-486). We designated this gene as SRH1 (SRP54 homologue). Gene disruption experiments showed that the SRH1 gene product is essential for cell growth.  相似文献   

8.
The gene for the leucine-, isoleucine-, and valine-binding protein (LIVAT-BP) in Pseudomonas aeruginosa PAO was isolated, and its nucleotide sequence was determined. The gene consisted of 1,119 nucleotides specifying a protein of 373 amino acid residues. Determination of the N-terminal amino acid sequence of the LIVAT-BP purified from P. aeruginosa shock fluid suggested that the N-terminal 26 residues of the gene product are cleaved off posttranslationally, showing the characteristic features of procaryotic signal peptides. The amino acid composition of the mature product predicted from the nucleotide sequence was in good agreement with that of the purified LIVAT-BP. The plasmid carrying the LIVAT-BP gene restored the activity of the high-affinity branched-chain amino acid transport system (the leucine, isoleucine, valine [LIV-I] transport system) in the braC310 mutant of P. aeruginosa, confirming that braC is the structural gene for LIVAT-BP. The mutant LIVAT-BP lacking a 16-amino-acid peptide in the middle was found to be functional in the LIV-I transport system. LIVAT-BP showed extensive homology (51% identical) to the LIV- and leucine-specific-binding proteins of Escherichia coli K-12, which are coded for by the livJ and livK genes, respectively, suggesting that the role of the proteins in the LIV-I transport systems is analogous in both organisms.  相似文献   

9.
A 4.3 kb XbaI restriction fragment of DNA from Clostridium sordellii G12 hybridized with a synthetic oligonucleotide representing the N-terminus of the sialidase protein secreted by C. sordellii. This cloned fragment was shown to encode only part of the sialidase protein. The sialidase gene of C. sordellii was completed by a 0.7 kb RsaI restriction fragment overlapping one end of the XbaI fragment. After combining the two fragments and transformation of Escherichia coli, a clone that expressed sialidase was obtained. The nucleotide sequence of the sialidase gene of C. sordellii G12 was determined. The sequence of the 18 N-terminal amino acids of the purified extracellular enzyme perfectly matched the predicted amino acid sequence near the beginning of the structural gene. The amino acid sequence derived from the complete gene corresponds to a protein with a molecular mass of 44,735 Da. Upstream from the putative ATG initiation codon, ribosomal-binding site and promoter-like consensus sequences were found. The encoded protein has a leader sequence of 27 amino acids. The enzyme expressed in E. coli has similar properties to the enzyme isolated from C. sordellii, except for small differences in size and isoelectric point. Significant homology (70%) was found with a sialidase gene from C. perfringens.  相似文献   

10.
11.
We have determined both the nucleotide sequence of the MEL1 gene of Saccharomyces carlsbergensis and the N-terminal amino acid (aa) sequence of its extracellular gene product, alpha-galactosidase (melibiase) (alpha-Gal). The predicted translation product of MEL1 is a pre-alpha-Gal protein containing an 18 aa N-terminal signal sequence for secretion. The purified enzyme is a dimer consisting of two 50-kDal polypeptides, each of which is glycosylated with no more than eight side chains. The 5'-flank of the MEL1 gene contains a region (UASm) having certain areas of sequence homology to similar sites found upstream of the structural genes GAL1, GAL7 and GAL10, which are also regulated by the action of the products of genes GAL4 and GAL80. There are three TATA boxes between UASm and the initiation codon of pre-alpha-Gal, as well as a typical yeast cleavage/polyadenylation sequence in the 3'-flank of the gene.  相似文献   

12.
13.
14.
15.
The gene encoding an extracellular chitinase from marine Alteromonas sp. strain O-7 was cloned in Escherichia coli JM109 by using pUC18. The chitinase produced was not secreted into the growth medium but accumulated in the periplasmic space. A chitinase-positive clone of E. coli produced two chitinases with different molecular weights from a single chitinase gene. These proteins showed almost the same enzymatic properties as the native chitinase of Alteromonas sp. strain O-7. The N-terminal sequences of the two enzymes were identical. The nucleotide sequence of the 3,394-bp SphI-HindIII fragment that included the chitinase gene was determined. A single open reading frame was found to encode a protein consisting of 820 amino acids with a molecular weight of 87,341. A putative ribosome-binding site, promoter, and signal sequence were identified. The deduced amino acid sequence of the cloned chitinase showed sequence homology with chitinases A (33.4%) and B (15.3%) from Serratia marcescens. Regardless of origin, the enzymes of the two bacteria isolated from marine and terrestrial environments had high homology, suggesting that these organisms evolved from a common ancestor.  相似文献   

16.
A gene for alpha-acetolactate decarboxylase (ALDC) was cloned from Bacillus brevis in Escherichia coli and in Bacillus subtilis. The 1.3-kilobase-pair nucleotide sequence of the gene, aldB, encoding ALDC and its flanking regions was determined. An open reading frame of 285 amino acids included a typical N-terminal signal peptide of 24 or 27 amino acids. A B. subtilis strain harboring the aldB gene on a recombinant plasmid processed and secreted ALDC. In contrast, a similar enzyme from Enterobacter aerogenes is intracellular.  相似文献   

17.
NodO is a secreted protein from Rhizobium leguminosarum bv. viciae with a role in signalling during legume nodulation. A Tn5-induced mutant was identified that was defective in NodO secretion. As predicted, the secretion defect decreased pea and vetch nodulation but only when the nodE gene was also mutated. This confirms earlier observations that NodO plays a particularly important role in nodulation when Nod factors carrying C18:1 (but not C18:4) acyl groups are the primary signalling molecules. In addition to NodO secretion and nodulation, the secretion mutant had a number of other characteristics. Several additional proteins including at least three Ca2+-binding proteins were not secreted by the mutant and this is thought to have caused the pleiotropic phenotype. The nodules formed by the secretion mutant were unable to fix nitrogen efficiently; this was not due to a defect in invasion because the nodule structures appeared normal and nodule cells contained many bacteroids. The mutant formed sticky colonies and viscous liquid cultures; analysis of the acidic exopolysaccharide revealed a decrease in the ratio of reducing sugars to total sugar content, indicating a longer chain length. The use of a plate assay showed that the mutant was defective in an extracellular glycanase activity. DNA sequencing identified the prsDE genes, which are homologous to genes encoding protease export systems in Erwinia chrysanthemi and Pseudomonas aeruginosa. An endoglycanase (Egl) from Azorhizobium caulinodans may be secreted from R. leguminosarum bv. viciae in a prsD-dependent manner. We conclude that the prsDE genes encode a Type I secretion complex that is required for the secretion of NodO, a glycanase and probably a number of other proteins, at least one of which is necessary for symbiotic nitrogen fixation.  相似文献   

18.
19.
20.
The gene coding for alveolysin, the thiol-activated toxin produced by Bacillus alvei, has been cloned by means of an oligonucleotide based on the known N-terminal sequence of the secreted protein. The complete nucleotide sequence of the gene has been determined. The deduced amino acid sequence of alveolysin shows that alveolysin shares homologies with listeriolysin O, perfringolysin O, pneumolysin, and streptolysin O. Alveolysin, like the other members of the family, contains a single cysteine in the conserved peptide sequence ECTGLA WEWWR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号