首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural information for mammalian DNA pol-beta combined with molecular and essential dynamics studies have provided atomistically detailed views of functionally important conformational rearrangements that occur during DNA repair and replication. This conformational closing before the chemical reaction is explored in this work as a function of the bound substrate. Anchors for our study are available in crystallographic structures of the DNA pol-beta in "open" (polymerase bound to gapped DNA) and "closed" (polymerase bound to gapped DNA and substrate, dCTP) forms; these different states have long been used to deduce that a large-scale conformational change may help the polymerase choose the correct nucleotide, and hence monitor DNA synthesis fidelity, through an "induced-fit" mechanism. However, the existence of open states with bound substrate and closed states without substrates suggest that substrate-induced conformational closing may be more subtle. Our dynamics simulations of two pol-beta/DNA systems (with/without substrates at the active site) reveal the large-scale closing motions of the thumb and 8-kDa subdomains in the presence of the correct substrate--leading to nearly perfect rearrangement of residues in the active site for the subsequent chemical step of nucleotidyl transfer--in contrast to an opening trend when the substrate is absent, leading to complete disassembly of the active site residues. These studies thus provide in silico evidence for the substrate-induced conformational rearrangements, as widely assumed based on a variety of crystallographic open and closed complexes. Further details gleaned from essential dynamics analyses clarify functionally relevant global motions of the polymerase-beta/DNA complex as required to prepare the system for the chemical reaction of nucleotide extension.  相似文献   

2.
2′-Deoxycytidylate deaminase [or deoxycytidine-5′-monophosphate (dCMP) deaminase, dCD] catalyzes the deamination of dCMP to deoxyuridine-5′-monophosphate to provide the main nucleotide substrate for thymidylate synthase, which is important in DNA synthesis. The activity of this homohexameric enzyme is allosterically regulated by deoxycytidine-5′-triphosphate (dCTP) as an activator and by deoxythymidine-5′-triphosphate as an inhibitor. In this article, we report the crystal structures of dCMP deaminase from Streptococcus mutans and its complex with dCTP and an intermediate analog at resolutions of 3.0 and 1.66 Å. The protein forms a hexamer composed of subunits adopting a three-layer α/β/α sandwich fold. The positive allosteric regulator dCTP mainly binds at the interface between two monomers in a molar ratio of 1:1 and rearranges the neighboring interaction networks. Structural comparisons and sequence alignments revealed that dCMP deaminase from Streptococcus mutans belongs to the cytidine deaminase superfamily, wherein the proteins exhibit a similar catalytic mechanism. In addition to the two conserved motifs involved in the binding of Zn2 +, a new conserved motif, (G43YNG46), related to the binding of dCTP was also identified. N-terminal Arg4, a key residue located between two monomers, binds strongly to the γ phosphate group of dCTP. The regulation signal was transmitted by Arg4 from the allosteric site to the active site via modifications in the interactions at the interface where the substrate-binding pocket was involved and the relocations of Arg26, His65, Tyr120, and Arg121 to envelope the active site in order to stabilize substrate binding in the complex. Based on the enzyme-regulator complex structure observed in this study, we propose an allosteric mechanism for dCD regulation.  相似文献   

3.
4.
Deoxyribonucleoside kinases (dNKs) catalyze the transfer of a phosphoryl group from ATP to a deoxyribonucleoside (dN), a key step in DNA precursor synthesis. Recently structural information concerning dNKs has been obtained, but no structure of a bacterial dCK/dGK enzyme is known. Here we report the structure of such an enzyme, represented by deoxyadenosine kinase from Mycoplasma mycoides subsp. mycoides small colony type (Mm-dAK). Superposition of Mm-dAK with its human counterpart's deoxyguanosine kinase (dGK) and deoxycytidine kinase (dCK) reveals that the overall structures are very similar with a few amino acid alterations in the proximity of the active site. To investigate the substrate specificity, Mm-dAK has been crystallized in complex with dATP and dCTP, as well as the products dCMP and dCDP. Both dATP and dCTP bind to the enzyme in a feedback-inhibitory manner with the dN part in the deoxyribonucleoside binding site and the triphosphates in the P-loop. Substrate specificity studies with clinically important nucleoside analogs as well as several phosphate donors were performed. Thus, in this study we combine structural and kinetic data to gain a better understanding of the substrate specificity of the dCK/dGK family of enzymes. The structure of Mm-dAK provides a starting point for making new anti bacterial agents against pathogenic bacteria.  相似文献   

5.
Potentially mutagenic uracil-containing nucleotide intermediates are generated by deamination of dCTP, either spontaneously or enzymatically as the first step in the conversion of dCTP to dTTP. dUTPases convert dUTP to dUMP, thus avoiding the misincorporation of dUTP into DNA and creating the substrate for the next enzyme in the dTTP synthetic pathway, thymidylate synthase. Although dCTP deaminase and dUTPase activities are usually found in separate but homologous enzymes, the hyperthermophile Methanococcus jannaschii has an enzyme, DCD-DUT, that harbors both dCTP deaminase and dUTP pyrophosphatase activities. DCD-DUT has highest activity on dCTP, followed by dUTP, and dTTP inhibits both the deaminase and pyrophosphatase activities. To help clarify structure-function relationships for DCD-DUT, we have determined the crystal structure of the wild-type DCD-DUT protein in its apo form to 1.42A and structures of DCD-DUT in complex with dCTP and dUTP to resolutions of 1.77A and 2.10A, respectively. To gain insights into substrate interactions, we complemented analyses of the experimentally defined weak density for nucleotides with automated docking experiments using dCTP, dUTP, and dTTP. DCD-DUT is a hexamer, unlike the homologous dUTPases, and its subunits contain several insertions and substitutions different from the dUTPase beta barrel core that likely contribute to dCTP specificity and deamination. These first structures of a dCTP deaminase reveal a probable role for an unstructured C-terminal region different from that of the dUTPases and possible mechanisms for both bifunctional enzyme activity and feedback inhibition by dTTP.  相似文献   

6.
Apyrase/ATP-diphosphohydrolase hydrolyzes di- and triphosphorylated nucleosides in the presence of a bivalent ion with sequential release of orthophosphate. We performed studies of substrate specificity on homogeneous isoapyrases from two potato tuber clonal varieties: Desiree (low ATPase/ADPase ratio) and Pimpernel (high ATPase/ADPase ratio) by measuring the kinetic parameters K(m) and k(cat) on deoxyribonucleotides and fluorescent analogues of ATP and ADP. Both isoapyrases showed a broad specificity towards dATP, dGTP, dTTP, dCTP, thio-dATP, fluorescent nucleotides (MANT-; TNP-; ethene-derivatives of ATP and ADP). The hydrolytic activity on the triphosphorylated compounds was always higher for the Pimpernel apyrase. Modifications either on the base or the ribose moieties did not increase K(m) values, suggesting that the introduction of large groups (MANT- and TNP-) in the ribose does not produce steric hindrance on substrate binding. However, the presence of these bulky groups caused, in general, a reduction in k(cat), indicating an important effect on the catalytic step. Substantial differences were observed between potato apyrases and enzymes from various animal tissues, concerning affinity labeling with azido-nucleotides and FSBA (5'-p-fluorosulfonylbenzoyl adenosine). PLP-nucleotide derivatives were unable to produce inactivation of potato apyrase. The lack of sensitivity of both potato enzymes towards these nucleotide analogues rules out the proximity or adequate orientation of sulfhydryl, hydroxyl or amino-groups to the modifying groups. Both apyrases were different in the proteolytic susceptibility towards trypsin, chymotrypsin and Glu-C.  相似文献   

7.
Bifunctional human PAPS synthetase (PAPSS) catalyzes, in a two-step process, the formation of the activated sulfate carrier 3'-phosphoadenosine 5'-phosphosulfate (PAPS). The first reaction involves the formation of the 5'-adenosine phosphosulfate (APS) intermediate from ATP and inorganic sulfate. APS is then further phosphorylated on its 3'-hydroxyl group by an additional ATP molecule to generate PAPS. The former reaction is catalyzed by the ATP-sulfurylase domain and the latter by the APS-kinase domain. Here, we report the structure of the APS-kinase domain of PAPSS isoform 1 (PAPSS1) representing the Michaelis complex with the products ADP-Mg and PAPS. This structure provides a rare glimpse of the active conformation of an enzyme catalyzing phosphoryl transfer without resorting to substrate analogs, inactivating mutations, or catalytically non-competent conditions. Our structure shows the interactions involved in the binding of the magnesium ion and PAPS, thereby revealing residues critical for catalysis. The essential magnesium ion is observed bridging the phosphate groups of the products. This function of the metal ion is made possible by the DGDN-loop changing its conformation from that previously reported, and identifies these loop residues unambiguously as a Walker B motif. Furthermore, the second aspartate residue of this motif is the likely candidate for initiating nucleophilic attack on the ATP gamma-phosphate group by abstracting the proton from the 3'-hydroxyl group of the substrate APS. We report the structure of the APS-kinase domain of human PAPSS1 in complex with two APS molecules, demonstrating the ability of the ATP/ADP-binding site to bind APS. Both structures reveal extended N termini that approach the active site of the neighboring monomer. Together, these results significantly increase our understandings of how catalysis is achieved by APS-kinase.  相似文献   

8.
MAP kinase phosphatase 5 (MKP5) is a member of the mitogen-activated protein kinase phosphatase (MKP) family and selectively dephosphorylates JNK and p38. We have determined the crystal structure of the catalytic domain of human MKP5 (MKP5-C) to 1.6 A. In previously reported MKP-C structures, the residues that constitute the active site are seriously deviated from the active conformation of protein tyrosine phosphatases (PTPs), which are accompanied by low catalytic activity. High activities of MKPs are achieved by binding their cognate substrates, representing substrate-induced activation. However, the MKP5-C structure adopts an active conformation of PTP even in the absence of its substrate binding, which is consistent with the previous results that MKP5 solely possesses the intrinsic activity. Further, we identify a sequence motif common to the members of MKPs having low catalytic activity by comparing structures and sequences of other MKPs. Our structural information provides an explanation of constitutive activity of MKP5 as well as the structural insight into substrate-induced activation occurred in other MKPs.  相似文献   

9.
10.
The structure of human cytosolic thymidine kinase in complex with its feedback inhibitor 2'-deoxythymidine-5'-triphosphate was determined. This structure is the first representative of the type II thymidine kinases found in several pathogens. The structure deviates strongly from the known structures of type I thymidine kinases such as the Herpes simplex enzyme. It contains a zinc-binding domain with four cysteines complexing a structural zinc ion. Interestingly, the backbone atoms of the type II enzyme bind thymine via hydrogen-bonds, in contrast to type I, where side chains are involved. This results in a specificity difference exploited for antiviral therapy. The presented structure will foster the development of new drugs and prodrugs for numerous therapeutic applications.  相似文献   

11.
Two mutant dCTP deaminase-dUTPases from Methanocaldococcus jannaschii were crystallised and the crystal structures were solved: E145A in complex with the substrate analogue α,β-imido-dUTP and E145Q in complex with diphosphate. Both mutant enzymes were defect in the deaminase reaction and had reduced dUTPase activity. In the structure of E145Q in complex with diphosphate, the diphosphate occupied the same position as the β- and γ-phosphoryls of the nucleotide analogue in the E145A complex. The C-terminal region that is unresolved in the apo-form of the enzyme was ordered in both complexes and closed over the active site by interacting with the phosphate backbone of the nucleotide or with the diphosphate. A magnesium ion was readily observed to complex with all three phosphoryls in the nucleotide complex or with the diphosphate. A water molecule that is likely to be involved in the nucleotidyl diphosphorylase reaction was observed in the E145A:α,β-imido-dUTP complex and positioned similarly as in the monofunctional trimeric dUTPase. A comparison of the active sites of the bifunctional enzyme and the monofunctional family members, dCTP deaminase and dUTPase, suggests similar reaction mechanisms. The similar side chain conformations in the deaminase site between the nucleotide and diphosphate complexes indicated a concerted re-arrangement, or induced fit, of the whole active site promoted by enzyme and nucleotide phosphoryl interactions. A pre-steady state kinetic analysis of the bifunctional reaction and the dUTPase half-reaction supported a conformational change upon substrate binding in both reactions and a concerted catalytic step for the bifunctional reaction.  相似文献   

12.
MTA/AdoHcy nucleosidase (MTAN) irreversibly hydrolyzes the N9-C1' bond in the nucleosides, 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (AdoHcy) to form adenine and the corresponding thioribose. MTAN plays a vital role in metabolic pathways involving methionine recycling, biological methylation, polyamine biosynthesis, and quorum sensing. Crystal structures of a wild-type (WT) MTAN complexed with glycerol, and mutant-enzyme and mutant-product complexes have been determined at 2.0A, 2.0A, and 2.1A resolution, respectively. The WT MTAN-glycerol structure provides a purine-free model and in combination with the previously solved thioribose-free MTAN-ADE structure, we now have separate apo structures for both MTAN binding subsites. The purine and thioribose-free states reveal an extensive enzyme-immobilized water network in their respective binding subsites. The Asp197Asn MTAN-MTA and Glu12Gln MTAN-MTR.ADE structures are the first enzyme-substrate and enzyme-product complexes reported for MTAN, respectively. These structures provide representative snapshots along the reaction coordinate and allow insight into the conformational changes of the enzyme and the nucleoside substrate. A "catalytic movie" detailing substrate binding, catalysis, and product release is presented.  相似文献   

13.
Cumming M  Leung S  McCallum J  McManus MT 《FEBS letters》2007,581(22):4139-4147
Recombinant ATP sulfurylase (AcATPS1) and adenosine-5'-phosphosulfate reductase (AcAPR1) from Allium cepa have been used to determine if these enzymes form protein-protein complexes in vitro. Using a solid phase binding assay, AcAPR1 was shown to interact with AcATPS1. The AcAPR1 enzyme was also expressed in E. coli as the N-terminal reductase domain (AcAPR1-N) and the C-terminal glutaredoxin domain (AcAPR1-C), but neither of these truncated proteins interacted with AcATPS1. The solid-phase interactions were confirmed by immune-precipitation, where anti-AcATPS1 IgG precipitated the full-length AcAPR1 protein, but not AcAPR1-N and AcAPR1-C. Finally, using the ligand binding assay, full-length AcATPS1 has been shown to bind to membrane-localised full-length AcAPR1. The significance of an interaction between chloroplastidic ATPS and APR in A. cepa is evaluated with respect to the control of the reductive assimilation of sulfate.  相似文献   

14.
Pyridoxine-5'-phosphate oxidase catalyzes the oxidation of either the C4' alcohol group or amino group of the two substrates pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate to an aldehyde, forming pyridoxal 5'-phosphate. A hydrogen atom is removed from C4' during the oxidation and a pair of electrons is transferred to tightly bound FMN. A new crystal form of the enzyme in complex with pyridoxal 5'-phosphate shows that the N-terminal segment of the protein folds over the active site to sequester the ligand from solvent during the catalytic cycle. Using (4'R)-[(3)H]PMP as substrate, nearly 100 % of the radiolabel appears in water after oxidation to pyridoxal 5'-phosphate. Thus, the enzyme is specific for removal of the proR hydrogen atom from the prochiral C4' carbon atom of pyridoxamine 5'-phosphate. Site mutants were made of all residues at the active site that interact with the oxygen atom or amine group on C4' of the substrates. Other residues that make interactions with the phosphate moiety of the substrate were mutated. The mutants showed a decrease in affinity, but exhibited considerable catalytic activity, showing that these residues are important for binding, but play a lesser role in catalysis. The exception is Arg197, which is important for both binding and catalysis. The R197 M mutant enzyme catalyzed removal of the proS hydrogen atom from (4'R)-[(3)H]PMP, showing that the guanidinium side-chain plays an important role in determining stereospecificity. The crystal structure and the stereospecificity studies suggests that the pair of electrons on C4' of the substrate are transferred to FMN as a hydride ion.  相似文献   

15.
Deoxycytidylate deaminase is unique within the zinc-dependent cytidine deaminase family as being allosterically regulated, activated by dCTP, and inhibited by dTTP. Here we present the first crystal structure of a dTTP-bound deoxycytidylate deaminase from the bacteriophage S-TIM5, confirming that this inhibitor binds to the same site as the dCTP activator. The molecular details of this structure, complemented by structures apo- and dCMP-bound, provide insights into the allosteric mechanism. Although the positioning of the nucleoside moiety of dTTP is almost identical to that previously described for dCTP, protonation of N3 in deoxythymidine and not deoxycytidine would facilitate hydrogen bonding of dTTP but not dCTP and may result in a higher affinity of dTTP to the allosteric site conferring its inhibitory activity. Further the functional group on C4 (O in dTTP and NH2 in dCTP) makes interactions with nonconserved protein residues preceding the allosteric motif, and the relative strength of binding to these residues appears to correspond to the potency of dTTP inhibition. The active sites of these structures are also uniquely occupied by dTMP and dCMP resolving aspects of substrate specificity. The methyl group of dTMP apparently clashes with a highly conserved tyrosine residue, preventing the formation of a correct base stacking shown to be imperative for deamination activity. The relevance of these findings to the wider zinc-dependent cytidine deaminase family is also discussed.  相似文献   

16.
Chen M  Drury JE  Penning TM 《Steroids》2011,76(5):484-490
Human steroid 5β-reductase (aldo-keto reductase 1D1) catalyzes the stereospecific NADPH-dependent reduction of the C4-C5 double bond of Δ4-ketosteroids to yield an A/B cis-ring junction. This cis-configuration is crucial for bile acid biosynthesis and plays important roles in steroid metabolism. The biochemical properties of the enzyme have not been thoroughly studied and conflicting data have been reported, partially due to the lack of highly homogeneous protein. In the present study, we systematically determined the substrate specificity of homogeneous human recombinant AKR1D1 using C18, C19, C21, and C27 Δ4-ketosteroids and assessed the pH-rate dependence of the enzyme. Our results show that AKR1D1 proficiently reduced all the steroids tested at physiological pH, indicating AKR1D1 is the only enzyme necessary for all the 5β-steroid metabolites present in humans. Substrate inhibition was observed with C18 to C21 steroids provided that the C11 position was unsubstituted. This structure activity relationship can be explained by the existence of a small alternative substrate binding pocket revealed by the AKR1D1 crystal structure. Non-steroidal anti-inflammatory drugs which are potent inhibitors of the related AKR1C enzymes do not inhibit AKR1D1. By contrast chenodeoxycholate and ursodeoxycholate were found to be potent non-competitive inhibitors suggesting that bile-acids may regulate their own synthesis at the level of AKR1D1 inhibition.  相似文献   

17.
The trimeric dCTP deaminase produces dUTP that is hydrolysed to dUMP by the structurally closely related dUTPase. This pathway provides 70-80% of the total dUMP as a precursor for dTTP. Accordingly, dCTP deaminase is regulated by dTTP, which increases the substrate concentration for half-maximal activity and the cooperativity of dCTP saturation. Likewise, increasing concentrations of dCTP increase the cooperativity of dTTP inhibition. Previous structural studies showed that the complexes of inactive mutant protein, E138A, with dUTP or dCTP bound, and wild-type enzyme with dUTP bound were all highly similar and characterized by having an ordered C-terminal. When comparing with a new structure in which dTTP is bound to the active site of E138A, the region between Val120 and His125 was found to be in a new conformation. This and the previous conformation were mutually exclusive within the trimer. Also, the dCTP complex of the inactive H121A was found to have residues 120-125 in this new conformation, indicating that it renders the enzyme inactive. The C-terminal fold was found to be disordered for both new complexes. We suggest that the cooperative kinetics are imposed by a dTTP-dependent lag of product formation observed in presteady-state kinetics. This lag may be derived from a slow equilibration between an inactive and an active conformation of dCTP deaminase represented by the dTTP complex and the dUTP/dCTP complex, respectively. The dCTP deaminase then resembles a simple concerted system subjected to effector binding, but without the use of an allosteric site.  相似文献   

18.
Wang J  Liu X  Liang YH  Li LF  Su XD 《FEBS letters》2008,582(20):2973-2978
Glucosamine-6-phosphate (GlcN6P) N-acetyltransferase 1 (GNA1) is a key enzyme in the pathway toward biosynthesis of UDP-N-acetylglucosamine, an important donor substrate for N-linked glycosylation. GNA1 catalyzes the formation of N-acetylglucosamine-6-phosphate (GlcNAc6P) from acetyl-CoA (AcCoA) and the acceptor substrate GlcN6P. Here, we report crystal structures of human GNA1, including apo GNA1, the GNA1-GlcN6P complex and an E156A mutant. Our work showed that GlcN6P binds to GNA1 without the help of AcCoA binding. Structural analyses and mutagenesis studies have shed lights on the charge distribution in the GlcN6P binding pocket, and an important role for Glu156 in the substrate binding. Hence, these findings have broadened our knowledge of structural features required for the substrate affinity of GNA1. STRUCTURED SUMMARY:  相似文献   

19.
Seitz C  Ameres S  Forkmann G 《FEBS letters》2007,581(18):3429-3434
Flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) are cytochrome P450 enzymes and determine the B-ring hydroxylation pattern of flavonoids by introducing hydroxyl groups at the 3'- or the 3'- and 5'-position, respectively. Sequence identity between F3'H and F3'5'H is generally low since their divergence took place early in the evolution of higher plants. However, in the Asteraceae the family-specific evolution of an F3'5'H from an F3'H precursor occurred, and consequently sequence identity is substantially higher. We used this phenomenon for alignment studies, in order to identify regions which could be involved in determining substrate specificity and functionality. Subsequent construction and expression of chimeric genes indicated that substrate specificity of F3'H and F3'5'H is determined near the N-terminal end and the functional difference between these two enzymes near the C-terminal end. The impact on function of individual amino acids located in substrate recognition site 6 (SRS6) was further tested by site-directed mutagenesis. Most interestingly, a conservative Thr to Ser exchange at position 487 conferred additional 5'-hydroxylation activity to recombinant Gerbera hybrida F3'H, whereas the reverse substitution transformed recombinant Osteospermum hybrida F3'5'H into an F3'H with low remaining 5'-hydroxylation activity. Since the physicochemical properties of Thr and Ser are highly similar, the difference in size appears to be the main factor contributing to functional difference. The results further suggest that relatively few amino acids exchanges were required for the evolutionary extension of 3'- to 3',5'-hydroxylation activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号