首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new molecule, type XIV collagen, with domains homologous to type IX and XII collagens has been recently discovered in pepsin extracts of fetal bovine tissues (Dublet, B., and van der Rest, M. (1991) J. Biol. Chem. 266, 6853-6858). In the present study, we describe the purification and the characterization of the intact native form of this newly discovered collagen. By using only two chromatographic steps we were able to obtain pure type XIV collagen. Furthermore, minor modifications of the protocol allowed us to perform the simultaneous large scale purification of type XII and type XIV collagens from the same tissue. Intact type XIV collagen migrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) as two bands of 220 and 290 kDa (reducing conditions). After collagenase treatment, a single band of 190 kDa is observed, which represents the large non-collagenous domain of the molecule (NC3). Rotary shadowing electron micrographs of intact type XIV collagen show a cross-shaped structure formed by a thin tail attached through a central globule to three identical "fingers." These properties are similar to those previously described for intact chicken type XII collagen (Dublet, B., Oh, S., Sugrue, S. P., Gordon, M. K., Gerecke, D. R., Olsen, B. R., and van der Rest, M. (1989) J. Biol. Chem. 264, 13150-13156), but the two molecules are different gene products and have charge and glycosylation differences. Finally, we show that the three chains of purified type XIV collagen have an apparent molecular mass of approximately 220 kDa and are not cross-linked to each other by bonds other than disulfide bridges. The same observation was made for type XII collagen. In both cases, the 290-kDa migrating band in SDS-PAGE is due to incomplete denaturation in electrophoresis sample buffer in the absence of urea.  相似文献   

2.
The FACIT collagens bind to the surface of collagen fibrils linking them with other matrix molecules. Bioinformatics analysis of cDNA clone DKFZp564B052 showed that it resembled the FACIT collagens and was therefore designated collagen alpha 1(XXI). Phylogenetic analyses of the N-terminal NC3 domains of alpha 1(XXI) and other FACIT collagens showed that (i) alpha 1(XXI) clustered with the FACIT collagens; (ii) collagen alpha 1(XXI) arose before the divergence of alpha 1(XII), alpha 1(XIV) and alpha 1(XX); (iii) collagen alpha 1(XIV) derived from the C-terminal region of the NC3 domain of a collagen alpha 1(XII)-like molecule; and (iv) collagen alpha 1(XX) derived from a collagen alpha 1(XIV)-like molecule. This study provides a framework for the evolution of the FACIT collagens which will be of value in linking NC3 domains with their functions.  相似文献   

3.
4.
The structurally related type XII-like collagen molecules TL-A and TL-B were recently identified in fetal bovine epiphyseal cartilage and subsequently shown to be collagen types XII and XIV, respectively. By indirect immunofluorescent staining of cartilage using monoclonal antibodies to the NC3 domains of each molecule, it was shown that type XII collagen was present predominantly around cartilage canals, the articular surface, subperichondrial margins, and the perichondrium, was less so in the remaining cartilage matrix, and was absent from the growth plate region. In the permanent cartilage of trachea, type XII stained somewhat more intensely in the margins beneath the loose connective tissue. Type XIV collagen localized more uniformly throughout the articular cartilage and was also absent from the growth plate region, whereas in tracheal cartilage, its distribution was similar to type XII. We have characterized the structure of these cartilage molecules and compared them with those from fetal bovine skin. Extraction of cartilage with 1 M NaCl and differential NaCl precipitation yields a fraction enriched for these two collagens. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting with monoclonal antibodies to the large amino-terminal non-triple-helical domain, NC3, revealed the presence in cartilage of two forms of type XII collagen: type XIIB, the molecule previously identified in chick and bovine tissues, and type XIIA, a much larger form equivalent to the molecule recently identified in WISH-transformed epithelial cell culture medium (Lunstrum, G. P., McDonough, A. M., Marinkovich, M. P., Keene, D. R., Morris, N. P., and Burgeson, R. E. (1992) J. Biol. Chem. 267, 20087-20092). Digestion with bacterial collagenase shows that the increased mass is present in the NC3A domain. Additional purification by velocity sedimentation and observation of rotary-shadowed images demonstrates molecules with extended non-triple-helical arms approximately 80 nm in length analogous to the WISH cell molecules. Electrophoretic mobilities of bands corresponding to type XIIA, but not type XIIB, are sensitive to chondroitinase ABC, indicating that type XIIA is a chondroitin sulfate proteoglycan and that modification occurs predominantly within the NC3A domain distal to NC3B. Neither type XIIB from skin nor type XIIA from WISH cells are chondroitinase-sensitive. By similar analysis, a portion of the type XIV collagen chains in cartilage was also sensitive to chondroitinase digestion. Chondroitin sulfate is apparently not located on its NC3 domain. As in skin, collagen types XII and XIV have subtly different distributions within cartilage and type XII may have a tissue-specific structure.  相似文献   

5.
Sites of stromelysin cleavage in collagen types II, IX, X, and XI of cartilage   总被引:14,自引:0,他引:14  
Human recombinant stromelysin-1 was shown to cleave four types of collagen (types II, IX, X, and XI) prepared from bovine and rat cartilages at specific sites. Stromelysin-1 cleaved salt-soluble native molecules of type IX collagen into two main triple-helical fragments, COL1 and COL2,3. Protein microsequencing identified the exact cleavage sites in the NC2 domain of all three chains, alpha 1(IX), alpha 2(IX), and alpha 3(IX). Stromelysin-1 also acted as a "telopeptidase," in that it efficiently clipped intact molecules of types II and XI collagens at sites just inside their terminal cross-linking hydroxylysine residues. Native molecules of type X collagen were cleaved by stromelysin-1 within their triple helical domains at a COOH-terminal site that reduced the alpha 1(X) chain size by 10 kDa. These findings suggest an important role for stromelysin in the turnover and remodeling of the collagenous matrix of cartilage both normally and in degenerative joint disease.  相似文献   

6.
Collagen XIV was isolated from neutral salt extracts of human placenta and purified by several chromatographic steps including affinity binding to heparin. The same procedures also led to the purification of a tissue form of fibronectin. Collagen XIV was demonstrated by partial sequence analysis of its Col1 and Col2 domains and by electron microscopy to be a disulphide-linked molecule with a characteristic cross-shape. The individual chains had a size of approximately 210 kD, which was reduced to approximately 180 kD (domain NC3) after treatment with bacterial collagenase. Specific antibodies mainly to NC3 epitopes were obtained by affinity chromatography and used in tissue and cell analyses by immunoblotting and radioimmunoassays. Two sequences from NC3 were identified on fragments obtained after trypsin cleavage. They were identical to cDNA-derived sequences of undulin, a noncollagenous extracellular matrix protein. This suggests that collagen XIV and undulin may be different splice variants from the same gene. Heparin binding was confirmed in ligand assays with a large basement membrane heparan sulphate proteoglycan. This binding could be inhibited by heparin and heparan sulphate but not by chondroitin sulphate. In addition, collagen XIV bound to the triple helical domain of collagen VI. The interactions with heparin sulphate proteoglycan and collagen VI were not shared by the NC3 domain, or by reduced and alkylated collagen XIV. No or only low binding was observed for collagens I-V, pN- collagens I and III, and several noncollagenous matrix proteins, including laminin, recombinant nidogen, BM-40/osteonectin, plasma and tissue fibronectin, vitronectin, and von Willebrand factor. Insignificant activity was also shown in cell attachment assays with nine established cell lines.  相似文献   

7.
Extracellular matrix molecules are generally categorized as collagens, elastin, proteoglycans, or other noncollagenous structural/cell interaction proteins. Many of these extracellular proteins contain distinctive repetitive modules, which can sometimes be found in other proteins. We describe the complete primary structure of an alpha 1 chain of type XII collagen from chick embryonic fibroblasts. This large, structurally chimeric molecule identified by cDNA analysis combines previously unrelated molecular domains into a single large protein 3,124 residues long (approximately 340 kD). The deduced chicken type XII collagen sequence starts at the amino terminus with one unit of the type III motif of fibronectin, which is followed by one unit homologous to the von Willebrand factor A domain, then one more fibronectin type III module, a second A domain from von Willebrand factor, 6 units of type III motif and a third A domain, 10 consecutive units of type III motif and a fourth A domain, a domain homologous to the NC4 domain peptide of type IX collagen, and finally two short collagenous regions previously described as part of the partially sequenced collagen type XII molecule; an Arg-Gly-Asp potential cell adhesive recognition sequence is present in a hydrophilic region at the terminus of one collagenous domain. Antibodies raised to type XII collagen synthesized in a bacterial expression system recognized not only previously reported bands (220 kD et cetera) in tendons, but also bands with apparently different molecular sizes in fibroblasts and 4-d embryos. The antibodies stained a wide variety of extracellular matrices in embryos in patterns distinct from those of fibronectin or interstitial collagens. They prominently stained extracellular matrix associated with certain neuronal tissues, such as axons from dorsal root ganglia and neural tube. These studies identify a novel chimeric type of molecule that contains both adhesion molecule and collagen motifs in one protein. Its structure blurs current classification schemes for extracellular proteins and underscores the potentially large diversity possible in these molecules.  相似文献   

8.
A large, alternate form of type XII collagen has been identified in cultures of the human epidermoid cell line WISH. This form, designated XIIA, is comprised of alpha chains that are approximately 90 kDa larger than the 220-kDa alpha chain previously characterized in extracts of fetal chicken and bovine tissues. Results from both collagenase digestion and rotary shadow analysis of partially purified material show that the increase is due to a larger NC3 domain. While both the large (XIIA) and the small (XIIB) forms of type XII collagen are identified in pulse-chase radiolabeling of fetal bovine skin explant culture, they are not related in a precursor-product fashion. Inhibition studies with alpha, alpha'-dipyridyl indicate that proper folding of the collagen helix is required for complete assembly and secretion of type XIIA in WISH cell culture. The 310-kDa alpha 1A chain is likely to represent the bovine equivalent of a second translation product, estimated to be 340 kDa, predicted from analysis of one complete chick cDNA sequence. Additionally, the amino-terminal amino acid sequence of the 220-kDa bovine alpha 1B chain was determined. This sequence is very near a potential alternate splice site predicted from analysis of chicken type XII cDNA.  相似文献   

9.
10.
Corneal transparency depends on the architecture of the stromal extracellular matrix, including fibril diameter, packing, and lamellar organization. The roles of collagen types XII and XIV in regulation of corneal fibrillogenesis and development were examined. The temporal and spatial expression patterns were analyzed using semi-quantitative RT-PCR, in situ hybridization, Western analysis, and immunohistochemistry. Expression of types XII and XIV collagens in cornea development demonstrated that type XII collagen mRNA levels are constant throughout development (10D-adult) while type XIV mRNA is highest in early embryonic stages (10D-14D), decreasing significantly by hatching. The spatial expression patterns of types XII and XIV collagens demonstrated a homogeneous signal in the stroma for type XIV collagen, while type XII collagen shows segregation to the sub-epithelial and sub-endothelial stroma during embryonic stages. The type XII collagen in the anterior stroma was an epithelial product during development while fibroblasts contributed in the adult. Type XIV collagen expression was highest early in development and was absent by hatching. Both types XII and type XIV collagen have different isoforms generated by alternative splicing that may alter specific interactions important in fibrillogenesis, fibril-fibril interactions, and higher order matrix assembly. Analysis of these splice variants demonstrated that the long XII mRNA levels were constant throughout development, while the short XII NC3 mRNA levels peaked early (12D) followed by a decrease. Both type XIV collagen NC1 splice variants are highest during early stages (12D-14D) decreasing by 17D of development. These data suggest type XII collagen may have a role in development of stromal architecture and maintenance of fibril organization, while type XIV collagen may have a role in regulation of fibrillogenesis.  相似文献   

11.
Type XIII collagen is a homotrimeric transmembrane collagen composed of a short intracellular domain, a single membrane-spanning region, and an extracellular ectodomain with three collagenous domains (COL1-3) separated by short non-collagenous domains (NC1-4). Several collagenous transmembrane proteins have been found to harbor a conserved sequence next to their membrane-spanning regions, and in the case of type XIII collagen this sequence has been demonstrated to be important for chain association. We show here that this 21-residue sequence is necessary but not sufficient for NC1 association. Furthermore, the NC1 association region was predicted to form an alpha-helical coiled-coil structure, which may already begin at the membrane-spanning region, as is also predicted for the related collagen types XXIII and XXV. Interestingly, a second coiled-coil structure is predicted to be located in the NC3 domain of type XIII collagen and in the corresponding domains of types XXIII and XXV. It is found experimentally that the absence of the NC1 coiled-coil domain leads to a lack of disulfide-bonded trimers and misfolding of the membrane-proximal collagenous domain COL1, whereas the COL2 and COL3 domains are correctly folded. We suggest that the NC1 coiled-coil domain is important for association of the N-terminal part of the type XIII collagen alpha chains, whereas the NC3 coiled-coil domain is implicated in the association of the C-terminal part of the molecule. All in all, we propose that two widely separated coiled-coil domains of type XIII and related collagens function as independent oligomerization domains participating in the folding of distinct areas of the molecule.  相似文献   

12.
Degradation of bovine nasal cartilage induced by interleukin-1 (IL-1) was used to study catabolic events in the tissue over 16 days. Culture medium was fractionated by two-dimensional electrophoresis (isoelectric focusing and SDS-PAGE). Identification of components by peptide mass fingerprinting revealed released fragments representing the NC4 domain of the type IX collagen alpha1 chain at days 12 and 16. A novel peptide antibody against a near N-terminal epitope of the NC4 domain confirmed the finding and indicated the presence of one of the fragments already at day 9. Mass spectrometric analysis of the two most abundant fragments revealed that the smallest one contained almost the entire NC4 domain cleaved between arginine 258 and isoleucine 259 in the sequence -ETCNELPAR258-COOH NH2-ITP-. A larger fragment contained the NC4 domain and the major part of the COL3 domain with a cleavage site between glycine 400 and threonine 401 in COL3 (-RGPPGPPGPPGPSG400-COOH NH2-TIG-). The presence of multiple collagen alpha1 (IX) N-terminal sequences demonstrates that the released molecules were cleaved at sites very close to the original N terminus either prior to or due to IL-1 treatment. Matrix metalloproteinase 13 (MMP-13) is active and cleaves fibromodulin in the time interval studied. Cartilage explants treated with MMP-13 were shown to release collagen alpha1 (IX) fragments with the same sizes and with the same cleavage sites as those obtained upon IL-1 treatment. These data describe cleavage by an MMP-13 activity toward non-collagenous and triple helix domains. These potentially important degradation events precede the major loss of type II collagen.  相似文献   

13.
A protein rich in proline and arginine (proline/arginine-rich protein (PARP] has been isolated from dissociative extracts of bovine nasal and articular cartilage, and its primary structure has been determined. The protein has 218 amino acids, giving a calculated protein Mr of 24,075. In nasal cartilage, this protein is in molar concentrations equivalent to 1/20-1/10 that of the link protein of cartilage proteoglycan aggregates. PARP has also been isolated from bovine articular cartilage, bovine fetal epiphysis, and nonossified human tarsal bones. PARP is similar to various collagen NH2-terminal domains. It is 49% identical to the NH2-terminal end of collagen alpha 1 (XI), 17% identical to the NC4 domain of collagen alpha 1 (IX), and 14% identical to the NC3 domain of collagen alpha 1 (XII). Four cysteines are conserved between type XI collagen and PARP, and these form two disulfide bonds. Two of the cysteines are also conserved between PARP and collagens IX and XII. The homology between the collagens and PARP makes it possible to speculate on the likely disulfide bond pattern in the collagen NH2-terminal domains. It is probable that PARP is a collagen fragment removed during processing in a manner analogous to chondrocalcin (the C-terminal propeptide of type II collagen).  相似文献   

14.
The role of collagen-derived proteolytic fragments in angiogenesis.   总被引:12,自引:0,他引:12  
Basement membrane molecules and fragments derived from them are regulators of biological activities such as cell growth, differentiation and migration. This review describes proteolytically derived fragments from the non-collagenous (NC1) domain at the C-terminus of the basement membrane collagens type IV, XV and XVIII, which have been implicated as regulators of angiogenesis. Endostatin is an endogenous collagen XVIII/NC1 derivative, inhibiting endothelial cell proliferation and migration in vitro and tumor-growth in vivo. A homologous NC1 domain fragment of type XV collagen has anti-angiogenic activity as well. Furthermore, NC1 domain fragments of the most abundant basement membrane collagen, type IV collagen, have been shown to inhibit induced vessel growth.  相似文献   

15.
Fibril-associated collagens with interrupted triple helices (FACITs) XII and XIV act as fibril organizers and assist in the maintenance of uniform fibril size. We investigated the spatial expression patterns of collagens XII and XIV in cryptogenic organizing pneumonia (COP)/organizing pneumonia (OP) and in idiopathic pulmonary fibrosis (IPF)/usual interstitial pneumonia (UIP) and compared them to normal human lung. Study subjects included 10 patients with COP/OP, 10 patients with IPF/UIP, and 8 control subjects. Immunostaining for collagens XII and XIV was carried out in paraffin-embedded human lung tissue sections. Picrosirius red histochemical staining for collagen I expression and electron microcopy to evaluate fibril diameter were also performed. In normal lung, collagens XII and XIV were expressed in perivascular and subpleural connective tissue. In COP/OP, both collagens showed intense staining in perivascular connective tissue, thickened alveolar septae, and subpleural areas. In IPF/UIP, XII and XIV were expressed in perivascular connective tissue, in areas of established fibrosis, and in areas of subpleural thickening. Only collagen XII was expressed in granulation tissue plugs in COP/OP and in fibroblastic foci in IPF/UIP. Collagen type I was overexpressed in fibrotic areas. Electron micrographs revealed obvious fibril diameter alteration and fusion in the same areas. FACITs XII and XIV are expressed in normal and fibrotic lung. Unlike collagen XIV, collagen XII was expressed in granulation tissue plugs in COP/OP and in fibroblast foci in IPF/UIP. This may suggest a possible distinct role for both collagens in the modulation of the extracellular matrix during the onset of fibrotic process.  相似文献   

16.
A minicollagen containing the COL1 and NC1 domains of chicken collagen XII has been produced in insect cells. Significant amounts of trimers contain a triple-helical domain in which the cysteines are not involved in inter- but in intrachain bonds. In reducing conditions, providing that the triple-helix is maintained, disulfide exchange between intra- and interchain bonding is observed, suggesting that the triple-helix forms first and that in favorable redox conditions interchain bonding occurs to stabilize the molecule. This hypothesis is verified by in vitro reassociation studies performed in the presence of reducing agents, demonstrating that the formation of interchain disulfide bonds is not a prerequisite to the trimeric association and triple-helical folding of the collagen XII molecule. Shortening the COL1 domain of minicollagen XII to its five C-terminal GXY triplets results in an absence of trimers. This can be explained by the presence of a collagenous domain that is too short to form a stable triple-helix. In contrast, the presence of five additional C-terminal triplets in COL1 allows the formation of triple-helical disulfide-bonded trimers, suggesting that the presence of a triple-helix is essential for the assembly of collagen XII.  相似文献   

17.
Type XIII collagen is a type II transmembrane protein predicted to consist of a short cytosolic domain, a single transmembrane domain, and three collagenous domains flanked by noncollagenous sequences. Previous studies on mRNAs indicate that the structures of the collagenous domain closest to the cell membrane, COL1, the adjacent noncollagenous domain, NC2, and the C-terminal domains COL3 and NC4 are subject to alternative splicing. In order to extend studies of type XIII collagen from cDNAs to the protein level we have produced it in insect cells by means of baculoviruses. Type XIII collagen alpha chains were found to associate into disulfide-bonded trimers, and hydroxylation of proline residues dramatically enhanced this association. This protein contains altogether eight cysteine residues, and interchain disulfide bonds could be located in the NC1 domain and possibly at the junction of COL1 and NC2, while the two cysteine residues in NC4 are likely to form intrachain bonds. Pepsin and trypsin/chymotrypsin digestions indicated that the type XIII collagen alpha chains form homotrimers whose three collagenous domains are in triple helical conformation. The thermal stabilities (T(m)) of the COL1, COL2, and COL3 domains were 38, 49 and 40 degrees C, respectively. The T(m) of the central collagenous domain is unusually high, which in the light of this domain being invariant in terms of alternative splicing suggests that the central portion of the molecule may have an important role in the stability of the molecule. All in all, most of the type XIII collagen ectodomain appears to be present in triple helical conformation, which is in clear contrast to the short or highly interrupted triple helical domains of the other known collagenous transmembrane proteins.  相似文献   

18.
The mechanisms of chain selection and assembly of fibril-associated collagens with interrupted triple helices (FACITs) must differ from that of fibrillar collagens, since they lack the characteristic C-propeptide. We analyzed two carboxyl-terminal noncollagenous domains, NC2 and NC1, of collagen XIX as potential trimerization units and found that NC2 forms a stable trimer and substantially stabilizes a collagen triple helix attached to either end. In contrast, the NC1 domain requires formation of an adjacent collagen triple helix to form interchain disulfide bridges. The NC2 domain of collagen XIX and probably of other FACITs is responsible for chain selection and trimerization.  相似文献   

19.
Collagen IX is a heterotrimer of three alpha-chains, which consists of three COL domains (collagenous domains) (COL1-COL3) and four NC domains (non-collagenous domains) (NC1-NC4), numbered from the C-terminus. Although collagen IX chains have been shown to associate via their C-terminal NC1 domains and form a triple helix starting from the COL1 domain, it is not known whether chain association can occur at other sites and whether other collagenous and non-collagenous regions are involved. To address this question, we prepared five constructs, two long variants (beginning at the NC4 domain) and three short variants (beginning at the COL2 domain), all ending at the NC2 domain (or NC2 replaced by NC1), to study association and selection of collagen IX alpha-chains. Both long variants were able to associate with NC1 or NC2 at the C-terminus and form various disulfide-bonded trimers, but the specificity of chain selection was diminished compared with full-length chains. Trimers of the long variant ending at NC2 were shown to be triple helical by CD. Short variants were not able to assemble into disulfide-bonded trimers even in the presence of both conserved cysteine residues from the COL1-NC1 junction. Our results demonstrate that collagen IX alpha-chains can associate in the absence of COL1 and NC1 domains to form a triple helix, but the COL2-NC2 region alone is not sufficient for trimerization. The results suggest that folding of collagen IX is a co-operative process involving multiple COL and NC domains and that the COL1-NC1 region is important for chain specificity.  相似文献   

20.
The collagens represent a highly diverse superfamily of extracellular matrix proteins that can be divided into several distinct families. One of the families, called FACIT (fibril-associated collagens with interrupted triple-helices) family, contains molecules that appear to be associated with cross-striated fibrils composed of members of the fibrillar collagen family. We have determined a portion of the primary structure of a recently discovered member of the FACIT family, chicken alpha 1(XIV) collagen, based on cloning and sequencing cDNAs. A synthetic oligopeptide from within the carboxy-terminal non-triple-helical domain of the alpha 1(XIV) chain has been used for generating specific polyclonal antibodies. The antiserum, PS1, recognizes a 220 kDa polypeptide in immunoblots of extracts of chicken skin, tendons, and cartilage. Sequencing of a tryptic peptide generated from purified, immunoreactive material, gives a sequence identical to that derived from cDNA sequencing, providing strong support for the type XIV-specificity of PS1. We have examined the expression of type XIV collagen in developing chick embryos by immunostaining of sections from 12-day-old embryos with PS1 and by Northern blot analysis of RNA from several tissues from both 12- and 17-day-old embryos. The results show that type XIV collagen is prevalent within relatively dense connective tissues such as dermis, tendons, perichondrium, perimysium, the stroma of lungs and liver, and blood vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号