首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glycosaminoglycans of human cultured normal glial and malignant glioma cells were studied. [35S]Sulphate or [3H]glucosamine added to the culture medium was incorporated into glycosaminoglycans; labelled glycosaminoglycans were isolated by DEAE-cellulose chromatography or gel chromatography. A simple procedure was developed for measurement of individual sulphated glycosaminoglycans in cell-culture fluids. In normal cultures the glycosaminoglycans of the pericellular pool (trypsin-susceptible material), the membrane fraction (trypsin-susceptible material of EDTA-detached cells) and the substrate-attached material consisted mainly of heparan sulphate. The intra- and extra-cellular pools showed a predominance of dermatan sulphate. The net production of hyaluronic acid was low. The accumulation of 35S-labelled glycosaminoglycans in the extracellular pool was essentially linear with time up to 72h. The malignant glioma cells differed in most aspects tested. The total production of glycosaminoglycans was much greater owing to a high production of hyaluronic acid and hyaluronic acid was the major cell-surface-associated glycosaminoglycan in these cultures. Among the sulphated glycosaminoglycans chondroitin sulphate, rather than heparan sulphate, was the predominant species of the pericellular pool. This was also true for the membrane fraction and substrate-attached material. Furthermore, the accumulation of extracellular 35S-labelled glycosaminoglycans was initially delayed for several hours and did not become linear with time until after 24 h of incubation. The glioma cells produced little dermatan sulphate and the dermatan sulphate chains differed from those of normal cultures with respect to the distribution of iduronic acid residues. The observed differences between normal glial and malignant glioma cells were not dependent on cell density; rather they were due to the malignant transformation itself.  相似文献   

2.
Confluent monolayer cultures of rabbit corneal endothelial and stromal cells were incubated independently with [35S]sulphate and [3H]glucosamine for 3 days. AFter incubation, labelled glycosaminoglycans were isolated from the growth medium and from a cellular fraction. These glycosaminoglycans were further characterized by DEAE-cellulose column chromatography and by sequential treatment with various glycosamino-glycan-degrading enzymes. Both endothelial and stromal cultures synthesized hyaluronic acid as the principal product. The cell fraction from the stromal cultures, however, had significantly less hyaluronic acid than that from the endothelial cultures. In addition, both types of cells synthesized a variety of sulphated glycosaminoglycans. The relative amounts of each sulphated glycosaminoglycan in the two cell lines were similar, with chondroitin 4-sulphate, chondroitin 6-sulphate and dermatan sulphate as the major components. Heparan sulphate was present in smaller amounts. Keratan sulphate was also identified, but only in very small amounts (1-3%). The presence of dermatan sulphate and the high content of hyaluronic acid are similar to the pattern of glycosaminoglycans seen in regenerating or developing tissues, including cornea.  相似文献   

3.
Transformed fat storing cells, i.e. myofibroblast-like cells are the major source of proteoglycans in injured liver. In the present study p-nitrophenyl-beta-D-xylopyranoside (PNP-Xyl), a specific metabolic inhibitor of proteoglycan synthesis, was used to analyze some details of altered glycosaminoglycan metabolism, proliferation, morphology and cytoskeletal organization of myofibroblast-like cells (secondary cultures of fat storing cells) under conditions of abrogated proteoglycan synthesis. PNP-Xyl increased dose-dependently the synthesis of [35S] sulfate-labelled medium glycosaminoglycans, among which chondroitin sulfate formation was stimulated predominantly. The distribution and composition of glycosaminoglycans in the cellular and cell surface compartments were affected differently. Production of medium hyaluronan was reduced by more than 40% at 5 mM PNP-Xyl. The compound inhibited dose-dependently the mitotic activity of myofibroblast-like cells without affecting viability. The morphologic appearance was changed at 5 mM PNP-Xyl and the organization and expression of desmin and smooth muscle iso-alpha-actin, both important markers of myofibroblast-like cells, were also modified by PNP-Xyl. Inhibition of proliferation, morphologic changes, and cytoskeletal disorganization were fully and rapidly reversible upon removal of the drug. The results support the notion of a direct or indirect role of proteoglycans in maintaining important functions of myofibroblast-like cells in culture.  相似文献   

4.
The synthesis of total sulfated glycosaminoglycans (GAG) was stimulated by transforming growth factors (TGF alpha 1.4-fold at 5 ng/ml, and TGF beta 1 2.05-fold at 2.5 ng/ml) in primary cultures of rat liver fat storing cells (FSC). The combination of both TGFs resulted in an additively stimulated synthesis of total sulfated GAG (more than 3-fold), chondroitin sulfate (more than 15-fold) and hyaluronate (3.8-fold), respectively, whereas the formation of dermatan sulfate was unchanged and that of heparan sulfate was slightly reduced. In summary, TGFs were identified as important mediators of stimulated GAG synthesis in those cells of the liver (FSC), which are the primary site of matrix glycoconjugate production.  相似文献   

5.
The synthesis of glycosaminoglycans by corneal stroma cells in culture   总被引:2,自引:0,他引:2  
Primary cultures of stroma cells from rabbit cornea have been established. In medium supplemented with serum the cells divide and produce glycosaminoglycans which are excreted into the medium. The glycosaminoglycans produced seemed to consist of about 10% keratan sulphate I, about 20% chondroitin sulphate and 60–70% hyaluronic acid. No significant variations in the composition were observed during the growth cycle. The degree of sulphation increased with the age of the culture from about one sulphate group per 10 hexosamine residues to about one per 3 residues.  相似文献   

6.
We have investigated the influence of culture substrata upon glycosaminoglycans produced in primary cultures of mouse mammary epithelial cells isolated from the glands of late pregnant mice. Three substrata have been used for experiments: tissue culture plastic, collagen (type I) gels attached to culture dishes, and collagen (type I) gels that have been floated in the culture medium after cell attachment. These latter gels contract significantly. Cells cultured on all three substrata produce hyaluronic acid, heparan sulfate, chondroitin sulfates and dermatan sulfate but the relative quantities accumulated and their distribution among cellular and extracellular compartments differ according to the nature of the culture substratum. Notably most of the glycosaminoglycans accumulated by cells on plastic are secreted into the culture medium, while cells on floating gels incorporate almost all their glycosaminoglycans into an extracellular matrix fraction. Cells on attached collagen gels secrete approx. 30% of their glycosaminoglycans and assemble most of the remainder into an extracellular matrix. Hyaluronic acid is produced in significant quantities by cells on plastic and attached gels but in relatively reduced quantity by cells on floating gels. In contrast, iduronyl-rich dermatan sulfate is accumulated by cells on floating gels, where it is primarily associated with the extracellular matrix fraction, but is proportionally reduced in cells on plastic and attached gels. The results are discussed in terms of polarized assembly of a morphologically distinct basal lamina, a process that occurs primarily when cells are on floating gels. In addition, as these cultures secrete certain milk proteins only when cultured on floating gels, we discuss the possibility that cell synthesized glycosaminoglycans and proteoglycans may play a role in the maintenance of a differentiated phenotype.  相似文献   

7.
When normal adult dog articular cartilage was cultured in the presence of dibutyryl cyclic AMP a higher proportion than normal of newly synthesized 35S-labeled glycosaminoglycans was released from the tissue into the culture medium, although their net synthesis was not affected. In conjunction with this release of sulfated glycosaminoglycans, 24 times more [3H]glucosamine-labeled hyaluronic acid was released from the cartilage into the medium, and net hyaluronate synthesis was enhanced 3-fold. Virtually all of the newly synthesized hyaluronic acid in the medium was associated with proteoglycans. The proteoglycans in the medium of the dibutyryl cyclic AMP treated cultures were normal in hydrodynamic size and interacted normally with hyaluronic acid to form large aggregates. These results suggest that the increase in hyaluronate synthesis caused by dibutyryl cyclic AMP mayt have destabilized the interaction of proteoglycans with the collagen meshwork of the cartilage. The changes seen in normal adult articular cartilage after incubation with dibutyryl cyclic AMP, therefore, are similar to those which are observed in cartilage of osteoarthritic joints.  相似文献   

8.
Glycosaminoglycan synthesis and secretion by primate arterial smooth muscle have been examined in cell culture. Mass cultures of diploid primate arterial smooth muscle cells were either double labeled with [35S]sulfate and [3H]acetate or single labeled with [3H]glucosamine for 24 h and glycosaminoglycans were extracted and isolated from the culture medium. Incorporation of labeled precursors into glycosaminoglycan was maximal during stationary phase of smooth muscle cell growth in culture and reduced, but not eliminated during logarithmic growth. The glycosaminoglycans synthesized and secreted into the culture medium were characterized by differential susceptibility to glycosaminoglycan-degradative enzymes and by cellulose acetate electrophoresis. Both assay procedures indicate that cultured primate arterial smooth muscle cells synthesize principally dermatan sulfate (60%-80% of total), chondroitin sulfate A and/or C (10%-20%of total) and little or no hyaluronic acid (0%-5% of total). This pattern of glycosaminoglycan formation differed significantly from that exhibited by isologous skin fibroblasts cultured under identical conditions. Dermal fibroblasts synthesize and secrete primarily hyaluronic acid (50%-60% of total) with lesser amounts of dermatan sulfate (10%-20% of total) and chondroitin sulfate A and/or C (10%-20% of total). These results indicate that differences exist in proteoglycan metabolism between these two connective tissue-producing cells in vitro, and suggest that the observed pattern of in vitro glycosaminoglycan synthesis by primate arterial smooth muscle cells may be characteristic for this cell type and not a general response to conditions of cell culture.  相似文献   

9.
Rat liver parenchymal cells were evaluated after 2 days of primary culture for their ability to synthesize and accumulate heparan sulfate as the major component and low-sulfated chondroitin sulfate, dermatan sulfate, chondroitin sulfate and hyaluronic acid as the minor ones. The newly synthesized glycosaminoglycans secreted into the medium were different from those remaining with and/or on the cell layer. Low-sulfated chondroitin 4-sulfate, a major glycosaminoglycan in blood, was synthesized in the order of 320 μg/liver per day, more than 90% of which was secreted into the medium within 16 h and 40% of the glycan secreted was degraded during that time. On the other hand, heparan sulfate, the major glycosaminoglycan synthesized by the parenchymal cells, was mainly distributed in the cell layer. After 8 days of culture, the synthesis of glycosaminoglycans by the cells increased markedly, especially dermatan sulfate, chondroitin sulfate and hyaluronic acid.  相似文献   

10.
Cultures of embryonic fibroblasts from Balb/c or CBA/J mice were given 12-h pulses of 14C-galactose, or were double-labelled with 3H-galactose and 35H-sulfate. The time course of the rates of labelling of glycosaminoglycans – galactose label was found in the uronic acid moiety – was studied in synchronously and asynchronously growing cultures. Partial synchrony was achieved by trypsinising quiescent, confluent cells and subsequent transfer of cells to new cultures with fresh medium. Synchrony was monitored by measurement of thymidine uptake in parallel cultures. The distribution of label in the hyaluronic acid, chondroitin sulfate, and heparan sulfate fractions from cells and culture media was determined at each time point. Peaks of DNA synthesis were accompanied by or followed 12 h later by a maximal rate of labelling with galactose of secreted glycosaminoglycans, and – with the exception of hyaluronic acid – also of cellular glycosaminoglycans. The rate of labelling with galactose of glycosphingolipids in parallel cultures followed a different time course. In double-label experiments the rates of labelling of glycosaminoglycan sulfates with 3H-galactose and 35S-sulfate did not go parallel. In older, quiescent cultures the labelling rate with galactose decreased while the sulfation rate increased. It is discussed that the labelling rate with galactose is indicative of the biosynthetic rate of the glycosaminoglycans. The conclusion is reached that glycosaminoglycans are preferentially synthesized and secreted after the S phase of the cell cycle.  相似文献   

11.
This study sought to elucidate the optimal cell culture conditions for studies concerned with the incorporation of [3H]glucosamine into glycosaminoglycans by rabbit aortic smooth muscle cells. The incorporation of radioactivity into extracellular sulphated glycosaminoglycans was linear for at least 72 h and that into pericellular sulphated glycosaminoglycans for up to 24 h. The incorporation of radiolabel into hyaluronic acid was linear only up to 12 h. In the exponential growth phase the incorporation of [3H]glucosamine into sulphated glycosaminoglycans and hyaluronic acid proved to be less marked than in the stationary growth phase, but the highest values were nevertheless obtained immediately after trypsinisation. When studied in the stationary growth phase, cell density and incorporation of [3H]glucosamine were positively correlated in the case of hyaluronic acid, but in the case of sulphated glycosaminoglycans there was a negative correlation. The serum concentration of the incubation medium and the incorporation of radioactivity into hyaluronic acid were positively related. With sulphated glycosaminoglycans this was the case only after a 7-day preincubation in the different serum concentrations. when incorporation was studied without preincubation, the incorporation of radioactivity into sulphated glycosaminoglycans proved to be negatively associated with the serum concentration of the medium. The environmental pH of the cells was associated with the incorporation of radioactivity into hyaluronic acid and sulphated glycosaminoglycans in that between pH values 6.8 and 7.9 the incorporation of radioactivity increased when the pH of the medium was raised.  相似文献   

12.
1. The growth-stimulating effect of serum on the proteoglycan and hyaluronic acid production in arterial smooth muscle cells was investigated, using cells synchronized by serum deprivation. 2. After stimulation, synthesis of [35S]sulfated proteoglycans and [14C]hyaluronic acid increased during G1 and G2 phases (about 2- and 5-fold, respectively, in the culture medium), in comparison with quiescent cells. 3. Neither the size, nor the charge, nor the relative proportions of [35S]glycosaminoglycans of the proteoglycans were modified. 4. However, when the cells were stimulated to divide, increased synthesis of large [14C]hyaluronic acid was observed concomitantly with the production of higher hydrodynamic size [35S]proteoglycans, which aggregated with hyaluronic acid (20%).  相似文献   

13.
The effect of various sulfated glycosaminoglycans on glycoconjugates syntheses in synovial membranes of rabbit knee joints in culture was investigated by two different approaches. In the first approach, synovial membranes isolated from rabbit knee joints were cultured in the presence of sulfated glycosaminoglycans and [14C]glucosamine. In the second approach, solutions of sulfated glycosaminoglycans were injected into rabbit knee joints and synovial membranes isolated from the joints were cultured in the presence of [14C]glucosamine. The major part of [14C]glucosamine-labeled glycoconjugates associated with the synovial membranes and secreted into culture medium was hyaluronic acid. Of the natural glycosaminoglycans tested, dermatan sulfate gave the maximum stimulation of hyaluronic acid synthesis followed by chondroitin 4- and 6-sulfate. Heparin, heparan sulfate, keratan sulfate, keratan polysulfate, and hyaluronic acid had no significant effect. Of the chemically polysulfated glycosaminoglycans, GAGPS (a persulfated derivative of chondroitin sulfate) gave high stimulation but N-acetylchitosan 3,6-disulfate had no effect. The effect of sulfated glycosaminoglycans on hyaluronic acid synthesis was the same in both experimental approaches. The increase in the amount of secreted hyaluronic acid in culture medium paralleled that in synovial membranes. The results indicate that the galactosamine-containing sulfated glycosaminoglycans have a specific stimulatory effect on hyaluronic acid synthesis. A high degree of sulfation of the molecules appeared to potentiate the stimulatory effect.  相似文献   

14.
Hyaluronic acid synthesis in cultured cells usually occurs during the growth phase. The relation between hyaluronic acid synthetase activity and cell proliferation is studied. The synthetase activity in rat fibroblasts is high during the growth phase, but low in the stationary phase. When the old medium of stationary cultures is renewed with fresh medium containing 20% calf serum, DNA synthesis occurs synchronously between 12 and 20 hours, followed by cell division. Under these conditions, the hyaluronic acid synthetase activity is significantly induced within two hours, reaching a maximum level at 5–8 hours, and then decreases gradually. This induction of the synthetase, which shows a high turnover rate, requires continued synthesis of both RNA and protein. Furthermore, the induction of both DNA and hyaluronic acid synthesis is found to be caused by calf serum added in the medium. However, dialysis and ultrafiltration of the serum permit us to concentrate an active fraction with a high molecular weight, which induces the synthetase activity, but not DNA synthesis.  相似文献   

15.
1. Human synovial fibroblastic cells were cultured in the presence and absence of an extract from bovine bone containing "matrigenin" activity. The rate of incorporation of radioactivity into the glycosaminoglycans of the medium of "matrigenin"-treated cultures increased after 24 hr of incubation, compared to "controls". 2. Higher serum concentrations had a greater effect on the incorporation of radioactivity into hyaluronic acid synthesized by "matrigenin"-treated cultures, than by "controls". 3. Incorporation of radioactive precursors into the proteoglycans isolated from the medium was greater in the "matrigenin"-treated cultures than in "controls". The synthesis of a large mol. wt proteoglycan was specifically stimulated.  相似文献   

16.
We decided to study the effect of glucose deprivation on glycosaminoglycan (GAG) synthesis and degradation in fibroblast cultures, vitality of these cells and a correlation of these processes with the expression of oxygen/glucose-regulated proteins (ORP150/GRP170). The incorporation of [3H]-glucosamine into both newly synthesised hyaluronic acid and sulphated GAGs and [35S]-sulphate into GAGs was used as an index of glycosaminoglycan synthesis. Quantitative evaluation of newly synthesised GAGs degradation was determined by pulse-chase experiments. We demonstrated that fibroblasts incubated in high glucose medium synthesised significant amounts of GAGs. Most of them were secreted into the culture medium. The shortage of glucose resulted in about 40% reduction in synthesis of GAGs, both those secreted into culture medium and remaining in the cell layer. The pulse-chase experiments demonstrated that the reduced amount of newly synthesised glycosaminoglycans was protected against intracellular degradation. Proportionally less GAGs were degraded in cultures incubated in low glucose than in high glucose media. These phenomena were accompanied by an increase in the expression of chaperon – ORP150 in cultures growing in low glucose medium. We suggest that the increased expression of ORP150 is a factor which prolongs the cell vitality and protects glycosaminoglycans against intracellular degradation induced by glucose deprivation.  相似文献   

17.
Hyaluronic acid synthesis was examined in cultures of differentiating chick embryo muscle cells before, during and after fusion. Prior to fusion, hyaluronic acid was synthesized and secreted into the medium, but once fusion began this synthesis was reduced significantly. Synthesis then increased again after completion of fusion. Thus, production of hyaluronic acid was lowest at the time of or right before cell fusion. When myoblasts were transformed by Rous sarcoma virus (RSV), a higher amount of hyaluronic acid was synthesized, and cells were not able to fuse. The turnover rate of hyaluronic acid might be different between myotubes and RSV-transformed myoblasts. The addition of exogenous hyaluronic acid to myoblast cultures resulted in the partial inhibition of fusion. The effect was reversible because fusion took place after removal of the exogenous hyaluronic acid. These observations suggest that hyaluronic acid plays an important role in the differentiation of myogenic cells, and that elevated hyaluronic acid synthesis may partly be the reason for inhibition of myotube formation upon transformation by Rous sarcoma virus.  相似文献   

18.
The glycosaminoglycans (GAG) of human cultured normal glial and malignant glioma cell lines were studied using 35S-sulphate or 3H-glucosamine as markers. 35S-labelled GAG were assayed by precipitation with cetylpyridinium chloride; 3H-labelled sulphated GAG and 3H-labelled hyaluronic acid were quantitated after separation on a DEAE-cellulos column. The net production of GAG and the distribution, composition and turnover of GAG were similar in all of the normal cell lines tested, but showed a great variability in the malignant cell lines. Most of the glioma cell lines produced more hyaluronic acid and less sulphated GAG than the normal cell lines, but exceptions were noted. The GAG of the trypsin susceptible (pericellular pool of normal glial cells consisted mainly of heparan sulphate with only minor amounts of other GAG. The analogous material of most glioma cells showed hyaluronic acid as the major GAG. Material liberated by trypsin from EDTA-detached cells (membrane fraction) was enriched in heparan sulphate as compared to the entire pericellular pool. Substrate attached material (SAM) left with the plastic dish after EDTA treatment of normal cultures was rich in heparan sulphate, whereas SAM of glioma cells lacked heparan sulphate or showed greatly reduced amounts of this component. Release of newly synthesized GAG to the extracellular medium was a rapid process in the normal cells but was more or less delayed in the glioma cells. The extracellular medium of the malignant glioma cultures was consistently poor in dermatan sulphate, as compared to that of normal cultures.  相似文献   

19.
The polycation, poly(l-lysine), repressed the synthesis of glycosaminoglycans in secondary cultures of chick embryo skin fibroblasts and caused sequestration of glycosaminoglycans around the cells. The synthesis of chondroitin sulphate, dermatan sulphate, hyaluronic acid and a fourth component, thought to be heparan sulphate, were all inhibited to the same extent but the sequestration of the sulphated polymers was greater than that of the unsulphated. The sequestered material was retained around and not within the cells. Incubations with the polyanion, poly(l-glutamate), showed a slight stimulation of glycosaminoglycan synthesis and in these and control incubations (no additions to medium), most of the glycosaminoglycan synthesised appeared in the culture medium. The subsequent addition of poly(l-glutamate) to incubations containing poly(l-lysine) reversed the inhibitory and sequestering effect of the polycation. It was concluded that the inhibition of synthesis by poly(l-lysine) was either a direct effect of poly(l-lysine) on the cell membrane or a result of the high local pericellular concentration of sequestered proteoglycan.  相似文献   

20.
The action of trimethylcolchicinic acid on the synthesis and excretion of proteoglycans has been studied on the L cell strain. The incorporation of precursors has been measured, and proteoglycans produced in the culture medium have been extracted and their concentration determined. The mucopolysaccharide components have been studied by electrophoresis. Control cultures produce hyaluronic acid, dermatan sulfate and very low concentrations of chondroitin 4-sulphate or 6-sulphate. Cultures treated with trimethycolchicinic acid (4 mu g/ml) produce hyaluronic acid, very high concentrations of chondroitin 4-sulphate or 6-sulphate and only traces of dermatan sulphate. So, trimethylcolchicinic acid does not modify the synthesis of hyaluronic acid: it considerably increases the production of chondroitin 4-sulphate or 6-sulphate and inhibits the production of dermatan sulphate. Protein fraction of the proteoglycans is proportionally increased in treated cultures, but there is no marked difference between amino acid concentrations of proteoglycans extracted from control and treated cultures. A slight fall in the cystine concentrations was the only change in the amino acid content of proteoglycans extracted from treated cultures. A hypothesis to explain these results is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号