首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
脂代谢紊乱与多种疾病的发生发展有关,严重威胁着公共健康。近年来,关于PI3K-Akt信号通路在2型糖尿病、肥胖、肿瘤代谢与免疫及心脑血管疾病等方面的研究层出不穷,本文旨在综述PI3K-Akt信号通路与多个脂代谢相关基因、多个脂代谢器官以及多种脂代谢紊乱相关疾病之间的重要联系,探讨其直接/间接参与脂质合成、转运、摄入与分解过程的分子机制及病理状态下的信号转导调控,以期为脂代谢紊乱相关疾病的治疗提供新的参考靶点。  相似文献   

2.
肿瘤对人类的生存危害极大,恶性肿瘤的治疗一直是世界性的难题。肿瘤血管生成是肿瘤赖以生长、转移的基础,受多种因子的调节。目前发现有多条信号网络参与调控肿瘤血管生成,PI3K/Akt是其中比较重要的一条信号传导途径,该通路与肿瘤的发生发展密切相关。本文介绍了PI3K/Akt信号通路的结构组成与活性调控,并重点阐述PI3K/Akt信号途径与肿瘤血管生成的关系。  相似文献   

3.
目的:探讨胰岛素样生长因子-1(IGF-1)促血管平滑肌细胞(VSMC)增殖的细胞内信号转导机制.方法:体外培养的兔血管平滑肌细胞分3组处理,以细胞计数、噻唑盐比色法测定细胞增殖能力,以磷脂酰肌醇-3激酶(PI3K)特异性抑制剂渥漫青霉素(WT)孵育细胞间接反映PI3K作用.Western Blot定量磷酸酶PTEN表达水平,免疫沉淀、特异底物diC16PIP3绿色试剂法测定PTEN脂质磷酸酶活性.结果:IGF-1(100 μg/L)使细胞计数及MTT 比色A值分别增加至对照组的2.8倍和3.8倍,WT抑制VSMC增殖,并完全逆转IGF-1的作用(均P<0.01).各浓度IGF-1对PTEN蛋白表达水平无明显影响,其对PTEN活性的抑制呈浓度(10~100 μg/L)及时间(3 min~24 h)依赖性(均P<0.01).结论:IGF-1促VSMC增殖作用与活化PI3K蛋白激酶的促生长活性及抑制PTEN脂质磷酸酶的负性调节细胞生长作用有关.  相似文献   

4.
葡萄糖代谢稳态对维持动物健康水平至关重要.磷脂酰肌醇3-激酶(phosphoinositide 3-kinase,PI3K)是受体酪氨酸激酶(receptor tyrosine kinase,RTK)和G蛋白偶联受体(G protein-coupled receptor,GPCR)共同调控的下游效应因子.它能够磷酸化磷...  相似文献   

5.
丝氨酸/苏氨酸激酶(serine/threonine kinase,AKT)是真核细胞中参与细胞信号转导的关键分子。目前已经证实PI3K(phosphatidylinositol-3-kinase,PI3K)/AKT信号通路在人类肿瘤、代谢紊乱、肾脏疾病以及精神障碍等疾病中发挥着重要的作用。近年来的研究还发现PI3K/AKT信号通路的激活会对心肌细胞的生长、代谢以及凋亡等活动产生影响,且该通路及其中的很多受体、激酶被证实与心力衰竭关系密切,这使该信号通路在心力衰竭的发病机制、诊断及治疗等方面的研究日益受到重视。总结PI3K/AKT的结构特点、相关信号转导机制及其与心力衰竭的关系将有利于更好地理解心力衰竭的发病机制。  相似文献   

6.
Williams等人的研究把果蝇在越冬策略及滞育方面的自然变异与由胰岛素调控的磷脂酰肌醇3-激酶(PI3-激酶)基因-Dp110联系在了一起。通过运用Dp110删除和转基因果蝇中的基因组学补救片断的方法,结果表明,滞育而引起的生殖停滞,与Dp110基因有关。Dp110基因的删除增加了滞育个体的比例,然而,Dp110基因在不包括视觉系统的神经系统中的表达却能减少滞育个体的比例。  相似文献   

7.
红细胞生成素作为临床上最常用的纠正贫血的药物,近年随着研究的不断深入,其非造血的组织器官保护作用逐渐被认识。PI3K/AKT通路作为介导红细胞生成素生物学作用的通路之一,在红细胞生成素对各种急慢性肾脏疾病的保护过程中占据重要地位。本文就PI3K/AKT通路在红细胞生成素肾保护中的作用方面的研究进展作一综述。  相似文献   

8.
哺乳动物雷帕霉素靶(mTOR)和蛋白激酶B(Akt/PKB)与肿瘤发生的密切关系已被广泛地认可.mTOR是一种丝/苏氨酸激酶,可以通过影响mRNA转录、代谢、自噬等方式调控细胞的生长.它既是PI3K的效应分子,也可以是PI3K的反馈调控因子.mTORC1 和mTORC2是mTOR的两种不同复合物. 对雷帕霉素敏感的mTORC1受到营养、生长因子、能量和应激4种因素的影响.生长因子通过PI3K/Akt信号通路调控mTORC1是最具特征性调节路径.而mTORC2最为人熟知的是作为Akt473磷酸化位点的上游激酶. 同样,Akt/PKB在细胞增殖分化、迁移生长过程中发挥着重要作用. 随着Thr308和Ser473两个位点激活,Akt/PKB也得以全面活化.因此,mTORC2-Akt-mTORC1的信号通路在肿瘤形成和生长中是可以存在的.目前临床肿瘤治疗中,PI3K/Akt/mTOR是重要的靶向治疗信号通路.然而,仅抑制mTORC1活性,不是所有的肿瘤都能得到预期控制.雷帕霉素虽然能抑制mTORC1,但也能反馈性地增加PI3K信号活跃度,从而影响治疗预后.近来发现的第二代抑制剂可以同时抑制mTORC1/2和PI3K活性,这种抑制剂被认为在肿瘤治疗上颇具前景.本综述着重阐述了PI3K/Akt/mTOR信号通路的传导、各因子之间的相互调控以及相关抑制剂的发展.  相似文献   

9.
刘梦颖  段晨阳  张吉强 《生物磁学》2013,(34):6790-6793
临床上组织损伤2—3天后即可出现肉芽组织,进而由于成纤维细胞和血管内皮细胞的增殖逐渐形成纤维性瘢痕。瘢痕的形成与血管再生和细胞增殖及凋亡密切相关。常见的病理性瘢痕主要是增生性瘢痕和瘢痕疙瘩,他们不仅影响患者关键伤口的活动,而且在美观上给患者带来莫大的痛苦。但是由于对瘢痕的形成原因及发病机制仍不甚清楚,至今临床上实行地以手术为主的对瘢痕的治疗方法仍未取得较满意效果。磷脂酰肌醇3激酶(P13K,phosphoinositide3.Kinase)/Akt(P13.K/Akt)通路广泛存在于人体的多个生理功能中,其在细胞因子作用下介导细胞生存已被证实,目前研究表明,P13-k/Akt信号通路在瘢痕形成中也发挥了重要作用,这可能会为瘢痕的治疗带来新的前景。本文将就近年来关于P13-k/Akt通路在中发挥的作用机制作一综述,并对未来利用此通路彻底治疗瘢痕的可能方式做一展望。  相似文献   

10.
Akt是一种丝氨酸/苏氨酸蛋白激酶,对细胞代谢、细胞增殖、细胞凋亡、细胞周期等多种生物学过程进行调控。本文主要综述了Akt的结构、调控机制、靶蛋白及其功能。  相似文献   

11.
PI3K activation is commonly observed in many human cancer cells. Survivin expression is elevated in cancer cells, and induced by some growth factors through PI3K activation. However, it is not clear whether PI3K activation is sufficient to induce survivin expression. To investigate the role of PI3K pathway in the regulation of survivin, we expressed an active form of PI3K, v-P3k in chicken embryonic fibroblast cells (CEF), and found that overexpression of PI3K-induced survivin mRNA expression. Forced expression of wild-type but not mutant tumor suppressor PTEN in CEF decreased survivin mRNA levels. PI3K regulates survivin expression through Akt activation. To further investigate downstream target of PI3K and Akt in regulating the expression of survivin mRNA, we found that PI3K and Akt-induced p70S6K1 activation and that overexpression of p70S6K1 alone was sufficient to induce survivin expression. The treatment of CEF cells by rapamycin decreased the survivin mRNA expression. This result demonstrated that p70S6K1 is an important target downstream of PI3K and Akt in regulating suvivin mRNA expression. The knockdown of survivin mRNA expression by its specific siRNA induced apoptosis of cancer cells when the cells were treated with LY294002 or taxol. Taken together, these results demonstrated that PI3K/Akt/p70S6K1 pathway is essential for regulating survivin mRNA expression.  相似文献   

12.
PI3K和Akt蛋白在异丙肾上腺素所致大鼠心肌肥厚中的表达   总被引:1,自引:0,他引:1  
目的研究异丙肾上腺素(ISO)致大鼠心肌肥厚中PI3K和Akt在心肌组织中的表达,为探讨心肌肥厚的信号转导机制和逆转心肌肥厚提供形态学资料.方法健康成年SD大鼠20只,随机分为实验组、对照组,每组10只.实验组给予异丙肾上腺素处理.1周后处死大鼠,取心肌组织,常规石蜡切片,HE染色,观察心肌组织的病理变化,测量心肌肥厚指标;免疫组织化学染色和免疫荧光染色,检测p-PI3K和p-Akt的表达及分布.结果实验组大鼠心肌肥厚指标与对照组相比均明显升高;免疫组织化学检测显示,实验组心肌组织p-PI3K和p-Akt蛋白表达面积和平均光密度较对照组高.免疫荧光检测实验组心肌组织p-PI3K和p-Akt蛋白表达较对照组高.结论小剂量持续给予 ISO 能建立大鼠心肌肥厚模型;p-PI3K和p-Akt蛋白表达均与心肌肥厚的发生和发展过程相关,PI3K/Akt信号通路激活,可能是导致心肌肥厚的机制之一.  相似文献   

13.
Abnormal glucose metabolism may contribute to cancer progression. As a member of the CRK (v-crk sarcoma virus CT10 oncogene homologue) adapter protein family, CRKL (CRK-like) associated with the development and progression of various tumours. However, the exact role and underlying mechanism of CRKL on energy metabolism remain unknown. In this study, we investigated the effect of CRKL on glucose metabolism of hepatocarcinoma cells. CRKL and PI3K were found to be overexpressed in both hepatocarcinoma cells and tissues; meanwhile, CRKL up-regulation was positively correlated with PI3K up-regulation. Functional investigations revealed that CRKL overexpression promoted glucose uptake, lactate production and glycogen synthesis of hepatocarcinoma cells by up-regulating glucose transporters 1 (GLUT1), hexokinase II (HKII) expression and down-regulating glycogen synthase kinase 3β (GSK3β) expression. Mechanistically, CRKL promoted glucose metabolism of hepatocarcinoma cells via enhancing the CRKL-PI3K/Akt-GLUT1/HKII-glucose uptake, CRKL-PI3K/Akt-HKII-glucose-lactate production and CRKL-PI3K/Akt-Gsk3β-glycogen synthesis. We demonstrate CRKL facilitates HCC malignancy via enhancing glucose uptake, lactate production and glycogen synthesis through PI3K/Akt pathway. It provides interesting fundamental clues to CRKL-related carcinogenesis through glucose metabolism and offers novel therapeutic strategies for hepatocarcinoma.  相似文献   

14.
Objective: It has been proved that lactate-4.25% dialysate could result in peritoneal fibrosis by inducing alternative activation of macrophages in our previous study, but the mechanism of high glucose-induced alternative activation has not been elucidated. This study was, therefore, to investigate the mechanism by high glucose stimuli.

Methods: In this study, Raw264.7 (murine macrophage cell line) cells were cultured and stimulated by 4.25% glucose medium, and mannitol medium was used as osmotic pressure control. Cells were harvested at 0?h, 4?h, 8?h, and 12?h to examine the expression of Arg-1, CD206, and p-Akt. After blocking PI3K by LY294002, the expression of Arg-1, CD206, and p-Akt was examined again.

Results: The expression of Arg-1 and CD206 was increased in a time-dependent manner induced by high glucose medium. On the contrary, there was mainly no Agr-1 or CD206 expressed in cells cultured in the mannitol medium with the same osmotic pressure. What’s more, Akt was phosphorylated at the eighth hour stimulated by high glucose medium, and LY294002 inhibited the expression of Arg-1 and CD206 by blocking the phosphorylation of Akt.

Conclusions: Our study indicated that high glucose rather than high osmotic pressure induced M2 phenotype via PI3K/Akt signaling pathway.  相似文献   

15.
Oxidative stress is regarded as a key regulator in the pathogenesis of prolonged hyperoxia-induced lung injury, which causes injury to alveolar epithelial cells and eventually leads to development of bronchopulmonary dysplasia (BPD). Many studies have shown that hydrogen has a protective effect in a variety of cells. However, the mechanisms by which hydrogen rescues cells from damage due to oxidative stress in BPD remains to be fully elucidated. This study sought to evaluate the effects of hydrogen on hyperoxia-induced lung injury and to investigate the underlying mechanism. Primary type II alveolar epithelial cells (AECIIs) were divided into four groups: control (21% oxygen), hyperoxia (95% oxygen), hyperoxia + hydrogen, and hyperoxia + hydrogen + LY294002 (a PI3K/Akt inhibitor). Proliferation and apoptosis of AECIIs were assessed using MTS assay and flow cytometry (FCM), respectively. Gene and protein expression were detected by quantitative polymerase chain reaction (q-PCR) and western blot analysis. Stimulation with hyperoxia decreased the expression of P-Akt, P- FoxO3a, cyclinD1 and Bcl-2. Hyperoxic conditions increased levels of Bim, Bax, and Foxo3a, which induced proliferation restriction and apoptosis of AECIIs. These effects of hyperoxia were reversed with hydrogen pretreatment. Furthermore, the protective effects of hydrogen were abrogated by PI3K/Akt inhibitor LY294002. The results indicate that hydrogen protects AECIIs from hyperoxia-induced apoptosis by inhibiting apoptosis factors and promoting the expression of anti-apoptosis factors. These effects were associated with activation of the PI3K/Akt/FoxO3a pathway.  相似文献   

16.
Nicorandil exerts myocardial protection through its antihypoxia and antioxidant effects. Here, we investigated whether it plays an anti‐apoptotic role in diabetic cardiomyopathy. Sprague‐Dawley rats were fed with high‐fat diet; then single intraperitoneal injection of streptozotocin was performed. Rats with fasting blood glucose (FBG) higher than 11.1 mmol/L were selected as models. Eight weeks after the models were built, rats were treated with nicorandil (7.5 mg/kg day and 15 mg/kg day respectively) for 4 weeks. H9c2 cardiomyocytes were treated with nicorandil and then stimulated with high glucose (33.3 mmol/L). TUNEL assay and level of bcl‐2, bax and caspase‐3 were measured. 5‐HD was used to inhibit nicorandil. Also, PI3K inhibitor (Miltefosine) and mTOR inhibitor (rapamycin) were used to inhibit PI3K/Akt pathway. The results revealed that nicorandil (both 7.5 mg/kg day and 15mg/kg day) treatment can increase the level of NO in the serum and eNOS in the heart of diabetic rats compared with the untreated diabetic group. Nicorandil can also improve relieve cardiac dysfunction and reduce the level of apoptosis. In vitro experiments, nicorandil (100 µmol) can attenuate the level of apoptosis stimulated by high glucose significantly in H9C2 cardiomyocyte compared with the untreated group. The effect of nicorandil on apoptosis was blocked by 5‐HD, and it was accompanied with inhibition of the phosphorylation of PI3K, Akt, eNOS, and mTOR. After inhibition of PI3K/Akt pathway, the protective effect of nicorandil is restrained. These results verified that as a NO donor, nicorandil can also inhibit apoptosis in diabetic cardiomyopathy which is mediated by PI3K/Akt pathway.  相似文献   

17.
This review focuses on the syntheses of PI3K/Akt/mTOR inhibitors that have been reported outside of the patent literature in the last 5 years but is largely centered on synthetic work reported in 2011 and 2012. While focused on syntheses of inhibitors, some information on in vitro and in vivo testing of compounds is also included. Many of these reported compounds are reversible, competitive adenosine triphosphate (ATP) binding inhibitors, so given the structural similarities of many of these compounds to the adenine core, this review presents recent work on inhibitors based on where the synthetic chemistry was started, that is, inhibitor syntheses which started with purines/pyrimidines are followed by inhibitor syntheses which began with pyridines, pyrazines, azoles, and triazines then moves to inhibitors which bear no structural resemblance to adenine: liphagal, wortmannin and quercetin analogs. The review then finishes with a short section on recent syntheses of phosphotidyl inositol (PI) analogs since competitive PI binding inhibitors represent an alternative to the competitive ATP binding inhibitors which have received the most attention.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号