首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Elevated carbon dioxide (CO(2)) has recently been shown to affect chemosensory and auditory behaviour, and activity levels of larval reef fishes, increasing their risk of predation. However, the mechanisms underlying these changes are unknown. Behavioural lateralization is an expression of brain functional asymmetries, and thus provides a unique test of the hypothesis that elevated CO(2) affects brain function in larval fishes. We tested the effect of near-future CO(2) concentrations (880 μatm) on behavioural lateralization in the reef fish, Neopomacentrus azysron. Individuals exposed to current-day or elevated CO(2) were observed in a detour test where they made repeated decisions about turning left or right. No preference for right or left turns was observed at the population level. However, individual control fish turned either left or right with greater frequency than expected by chance. Exposure to elevated-CO(2) disrupted individual lateralization, with values that were not different from a random expectation. These results provide compelling evidence that elevated CO(2) directly affects brain function in larval fishes. Given that lateralization enhances performance in a number of cognitive tasks and anti-predator behaviours, it is possible that a loss of lateralization could increase the vulnerability of larval fishes to predation in a future high-CO(2) ocean.  相似文献   

2.
Ocean acidification is predicted to negatively impact the reproduction of many marine species, either by reducing fertilization success or diverting energy from reproductive effort. While recent studies have demonstrated how ocean acidification will affect larval and juvenile fishes, little is known about how increasing partial pressure of carbon dioxide (pCO2) and decreasing pH might affect reproduction in adult fishes. We investigated the effects of near‐future levels of pCO2 on the reproductive performance of the cinnamon anemonefish, Amphiprion melanopus, from the Great Barrier Reef, Australia. Breeding pairs were held under three CO2 treatments [Current‐day Control (430 μatm), Moderate (584 μatm) and High (1032 μatm)] for a 9‐month period that included the summer breeding season. Unexpectedly, increased CO2 dramatically stimulated breeding activity in this species of fish. Over twice as many pairs bred in the Moderate (67% of pairs) and High (55%) compared to the Control (27%) CO2 treatment. Pairs in the High CO2 group produced double the number of clutches per pair and 67% more eggs per clutch compared to the Moderate and Control groups. As a result, reproductive output in the High group was 82% higher than that in the Control group and 50% higher than that in the Moderate group. Despite the increase in reproductive activity, there was no difference in adult body condition among the three treatment groups. There was no significant difference in hatchling length between the treatment groups, but larvae from the High CO2 group had smaller yolks than Controls. This study provides the first evidence of the potential effects of ocean acidification on key reproductive attributes of marine fishes and, contrary to expectations, demonstrates an initially stimulatory (hormetic) effect in response to increased pCO2. However, any long‐term consequences of increased reproductive effort on individuals or populations remain to be determined.  相似文献   

3.
The pervasive enrichment of CO2 in our oceans is a well‐documented stressor to marine life. Yet, there is little understanding about how CO2 affects species indirectly in naturally complex communities. Using natural CO2 vents, we investigated the indirect effects of CO2 enrichment through a marine food chain. We show how CO2 boosted the biomass of three trophic levels: from the primary producers (algae), through to their grazers (gastropods), and finally through to their predators (fish). We also found that consumption by both grazers and predators intensified under CO2 enrichment, but, ultimately, this top‐down control failed to compensate for the boosted biomass of both primary producers and herbivores (bottom‐up control). Our study suggests that indirect effects can buffer the ubiquitous and direct, negative effects of CO2 enrichment by allowing the upward propagation of resources through the food chain. Maintaining the natural complexity of food webs in our ocean communities could, therefore, help minimize the future impacts of CO2 enrichment.  相似文献   

4.
Anthropogenic carbon dioxide (CO2) emissions and the resultant acidification of surface ocean waters are predicted to have far‐reaching consequences for biological processes in the marine environment. For example, because changes in pH and pCO2 can alter sperm performance, ocean acidification may be accompanied by reductions in the success of fertilization in marine broadcast spawners. Several studies have attempted to determine the effects of elevated pCO2 on marine invertebrate fertilization success, albeit with differing results. These conflicts may stem from the use of inappropriate sperm–egg contact times and, in several cases, the lack of measurements over a range of sperm concentrations extending from sperm‐limited conditions to polyspermy scenarios. In our study, we used biologically realistic sperm–egg contact times and a full range of sperm concentrations to assess the effect of elevated pCO2 on fertilization in the broadcast spawning sea urchin, Strongylocentrotus franciscanus. Fertilization experiments were carried out in seawater bubbled with CO2 to 400 (control), 800, and 1800 ppm. Using a fertilization kinetics model, we estimate that elevated pCO2 levels both increased sperm limitation and reduced the efficiency of fast blocks to polyspermy. Thus, elevated pCO2 decreased the range of sperm concentrations over which high fertilization success was likely. Given the inherent difficulties in achieving high fertilization success in broadcast spawners, raised pCO2 levels are likely to exacerbate low fertilization success in low‐density populations or in areas with high water turbulence.  相似文献   

5.
6.
Anthropogenic rise in the carbon dioxide concentration in the atmosphere leads to global warming and acidification of the oceans. Ocean acidification (OA) is harmful to many organisms but especially to those that build massive skeletons of calcium carbonate, such as reef corals. Here, we test the recent suggestion that OA leads not only to declining calcification of reef corals and reduced growth rates of reefs but may also have been a trigger of ancient reef crises and mass extinctions in the sea. We analyse the fossil record of biogenic reefs and marine organisms to (1) assess the timing and intensity of ancient reef crises, (2) check which reef crises were concurrent with inferred pulses of carbon dioxide concentrations and (3) evaluate the correlation between reef crises and mass extinctions and their selectivity in terms of inferred physiological buffering. We conclude that four of five global metazoan reef crises in the last 500 Myr were probably at least partially governed by OA and rapid global warming. However, only two of the big five mass extinctions show geological evidence of OA.  相似文献   

7.
Climate change projections indicate more frequent and severe tropical marine heatwaves (MHWs) and accompanying hypoxia year-round. However, most studies have focused on peak summer conditions under the assumption that annual maximum temperatures will induce the greatest physiological consequences. This study challenges this idea by characterizing seasonal MHWs (i.e., mean, maximum, and cumulative intensities, durations, heating rates, and mean annual occurrence) and comparing metabolic traits (i.e., standard metabolic rate (SMR), Q10 of SMR, maximum metabolic rate (MMR), aerobic scope, and critical oxygen tension (Pcrit)) of winter- and summer-acclimatized convict tang (Acanthurus triostegus) to the combined effects of MHWs and hypoxia. Fish were exposed to one of six MHW treatments with seasonally varying maximum intensities (winter: 24.5, 26.5, 28.5°C; summer: 28.5, 30.5, 32.5°C), representing past and future MHWs under IPCC projections (i.e., +0, +2, +4°C). Surprisingly, MHW characteristics did not significantly differ between seasons, yet SMR was more sensitive to winter MHWs (mean Q10 = 2.92) than summer MHWs (mean Q10 = 1.81), despite higher absolute summer temperatures. Concurrently, MMR increased similarly among winter +2 and +4°C treatments (i.e., 26.5, 28.5°C) and all summer MHW treatments, suggesting a ceiling for maximal MMR increase. Aerobic scope did not significantly differ between seasons nor among MHW treatments. While mean Pcrit did not significantly vary between seasons, warming of +4°C during winter (i.e., 28.5°C) significantly increased Pcrit relative to the winter control group. Contrary to the idea of increased sensitivity to MHWs during the warmest time of year, our results reveal heightened sensitivity to the deleterious effects of winter MHWs, and that seasonal acclimatization to warmer summer conditions may bolster metabolic resilience to warming and hypoxia. Consequently, physiological sensitivity to MHWs and hypoxia may extend across larger parts of the year than previously expected, emphasizing the importance of evaluating climate change impacts during cooler seasons when essential fitness-related traits such as reproduction occur in many species.  相似文献   

8.
9.
The mean predicted decrease of 0.3–0.4 pH units in the global surface ocean by the end of the century has prompted urgent research to assess the potential effects of ocean acidification on the marine environment, with strong emphasis on calcifying organisms. Among them, the Mediterranean red coral (Corallium rubrum) is expected to be particularly susceptible to acidification effects, due to the elevated solubility of its Mg‐calcite skeleton. This, together with the large overexploitation of this species, depicts a bleak future for this organism over the next decades. In this study, we evaluated the effects of low pH on the species from aquaria experiments. Several colonies of C. rubrum were long‐term maintained for 314 days in aquaria at two different pH levels (8.10 and 7.81, pHT). Calcification rate, spicule morphology, major biochemical constituents (protein, carbohydrates and lipids) and fatty acids composition were measured periodically. Exposure to lower pH conditions caused a significant decrease in the skeletal growth rate in comparison with the control treatment. Similarly, the spicule morphology clearly differed between both treatments at the end of the experiment, with aberrant shapes being observed only under the acidified conditions. On the other hand, while total organic matter was significantly higher under low pH conditions, no significant differences were detected between treatments regarding total carbohydrate, lipid, protein and fatty acid composition. However, the lower variability found among samples maintained in acidified conditions relative to controls, suggests a possible effect of pH decrease on the metabolism of the colonies. Our results show, for the first time, evidence of detrimental ocean acidification effects on this valuable and endangered coral species.  相似文献   

10.
Ocean acidification, via an anthropogenic increase in seawater carbon dioxide (CO2), is potentially a major threat to coral reefs and other marine ecosystems. However, our understanding of how natural short‐term diurnal CO2 variability in coral reefs influences longer term anthropogenic ocean acidification remains unclear. Here, we combine observed natural carbonate chemistry variability with future carbonate chemistry predictions for a coral reef flat in the Great Barrier Reef based on the RCP8.5 CO2 emissions scenario. Rather than observing a linear increase in reef flat partial pressure of CO2 (pCO2) in concert with rising atmospheric concentrations, the inclusion of in situ diurnal variability results in a highly nonlinear threefold amplification of the pCO2 signal by the end of the century. This significant nonlinear amplification of diurnal pCO2 variability occurs as a result of combining natural diurnal biological CO2 metabolism with long‐term decreases in seawater buffer capacity, which occurs via increasing anthropogenic CO2 absorption by the ocean. Under the same benthic community composition, the amplification in the variability in pCO2 is likely to lead to exposure to mean maximum daily pCO2 levels of ca. 2100 μatm, with corrosive conditions with respect to aragonite by end‐century at our study site. Minimum pCO2 levels will become lower relative to the mean offshore value (ca. threefold increase in the difference between offshore and minimum reef flat pCO2) by end‐century, leading to a further increase in the pCO2 range that organisms are exposed to. The biological consequences of short‐term exposure to these extreme CO2 conditions, coupled with elevated long‐term mean CO2 conditions are currently unknown and future laboratory experiments will need to incorporate natural variability to test this. The amplification of pCO2 that we describe here is not unique to our study location, but will occur in all shallow coastal environments where high biological productivity drives large natural variability in carbonate chemistry.  相似文献   

11.
The purpose of this study was to test the effects of high CO2 exposure on wound healing rates in an elasmobranch fish (Urobatis jamaicensis). Small dermal injuries (8 mm biopsy) closed by 22 days post wounding with a decrease in haematocrit. High CO2 exposure (ΔpH = 1.4) did not influence healing rate or haematocrit. Combined, these data provide evidence that minimally invasive scientific procedures have short-term impacts on elasmobranch fishes even during exposure to a chronic stressor. Therefore, wound healing rates may not be strongly impacted by ocean acidification (ΔpH = 0.4).  相似文献   

12.
Exponentially rising CO2 (currently ~400 μatm) is driving climate change and causing acidification of both marine and freshwater environments. Physiologists have long known that CO2 directly affects acid–base and ion regulation, respiratory function and aerobic performance in aquatic animals. More recently, many studies have demonstrated that elevated CO2 projected for end of this century (e.g. 800–1000 μatm) can also impact physiology, and have substantial effects on behaviours linked to sensory stimuli (smell, hearing and vision) both having negative implications for fitness and survival. In contrast, the aquaculture industry was farming aquatic animals at CO2 levels that far exceed end‐of‐century climate change projections (sometimes >10 000 μatm) long before the term ‘ocean acidification’ was coined, with limited detrimental effects reported. It is therefore vital to understand the reasons behind this apparent discrepancy. Potential explanations include 1) the use of ‘control’ CO2 levels in aquaculture studies that go beyond 2100 projections in an ocean acidification context; 2) the relatively benign environment in aquaculture (abundant food, disease protection, absence of predators) compared to the wild; 3) aquaculture species having been chosen due to their natural tolerance to the intensive conditions, including CO2 levels; or 4) the breeding of species within intensive aquaculture having further selected traits that confer tolerance to elevated CO2. We highlight this issue and outline the insights that climate change and aquaculture science can offer for both marine and freshwater settings. Integrating these two fields will stimulate discussion on the direction of future cross‐disciplinary research. In doing so, this article aimed to optimize future research efforts and elucidate effective mitigation strategies for managing the negative impacts of elevated CO2 on future aquatic ecosystems and the sustainability of fish and shellfish aquaculture.  相似文献   

13.
It is important to understand how marine calcifying organisms may acclimatize to ocean acidification to assess their survival over the coming century. We cultured the cold water coralline algae, Lithothamnion glaciale, under elevated pCO2 (408, 566, 770, and 1024 μatm) for 10 months. The results show that the cell (inter and intra) wall thickness is maintained, but there is a reduction in growth rate (linear extension) at all elevated pCO2. Furthermore a decrease in Mg content at the two highest CO2 treatments was observed. Comparison between our data and that at 3 months from the same long‐term experiment shows that the acclimation differs over time since at 3 months, the samples cultured under high pCO2 showed a reduction in the cell (inter and intra) wall thickness but a maintained growth rate. This suggests a reallocation of the energy budget between 3 and 10 months and highlights the high degree plasticity that is present. This might provide a selective advantage in future high CO2 world.  相似文献   

14.
Escape performance is fundamental for survival in fish and most other animals. While previous work has shown that both intrinsic (e.g. size, shape) and extrinsic (e.g. temperature, hypoxia) factors can affect escape performance, the possibility that behavioural asymmetry may affect timing and locomotor performance in startled fish is largely unexplored. Numerous studies have found a relationship between brain lateralization and performance in several cognitive tasks. Here, we tested the hypothesis that behavioural lateralization may affect escape performance in a teleost, the shiner perch Cymatogaster aggregata. Escape responses were elicited by mechanical stimulation and recorded using high-speed video (250 Hz). A number of performance variables were analysed, including directionality, escape latency, turning rate and distance travelled within a fixed time. A lateralization index was obtained by testing the turning preference of each subject in a detour test. While lateralization had no effect on escape directionality, strongly lateralized fish showed higher escape reactivity, i.e. shorter latencies, which were associated with higher turning rates and longer distances travelled. Therefore, lateralization is likely to result in superior ability to escape from predator attacks, since previous work has shown that escape timing, turning rate and distance travelled are among the main determinants of escape success.  相似文献   

15.
Determining the capacity of organisms to acclimate and adapt to increased temperatures is key to understand how populations and communities will respond to global warming. Although there is evidence that elevated water temperature affects metabolism, growth and condition of tropical marine fish, it is unknown whether they have the potential to acclimate, given adequate time. We reared the tropical reef fish Acanthochromis polyacanthus through its entire life cycle at present day and elevated (+1.5 and+3.0 °C) water temperatures to test its ability to thermally acclimate to ocean temperatures predicted to occur over the next 50–100 years. Fish reared at 3.0 °C greater than the present day average reduced their resting oxygen consumption (RMR) during summer compared with fish reared at present day temperatures and tested at the elevated temperature. The reduction in RMR of up to 69 mg O2 kg?1 h?1 in acclimated fish could represent a significant benefit to daily energy expenditure. In contrast, there was no acclimation to summer temperatures exhibited by fish reared at 1.5 °C above present day temperatures. Fish acclimated to +3.0 °C were smaller and in poorer condition than fish reared at present day temperatures, suggesting that even with acclimation there will be significant consequences for future populations of tropical fishes caused by global warming.  相似文献   

16.
Rising atmospheric carbon dioxide levels are driving decreases in aquatic pH. As a result, there has been a surge in the number of studies examining the impact of acidification on aquatic fauna over the past decade. Thus far, both positive and negative impacts on the growth of fish have been reported, creating a disparity in results. Food availability and single‐generation exposure have been proposed as some of the reasons for these variable results, where unrealistically high food treatments lead to fish overcoming the energetic costs associated with acclimating to decreased pH. Likewise, exposure of fish to lower pH for only one generation may not capture the likely ecological response to acidification that wild populations might experience over two or more generations. Here we compare somatic growth rates of laboratory populations of the Trinidadian guppy (Poecilia reticulata) exposed to pH levels that represent the average and lowest levels observed in streams in its native range. Specifically, we test the role of maternal acclimation and resource availability on the response of freshwater fishes to acidification. Acidification had a negative impact on growth at more natural, low food treatments. With high food availability, fish whose mothers were acclimated to the acidified treatment showed no reduction in growth, compared to controls. Compensatory growth was observed in both control–acidified (maternal–natal environment) and acidified–control groups, where fish that did not experience intergenerational effects achieved the same size in response to acidification as those that did, after an initial period of stunted growth. These results suggest that future studies on the effects of shifting mean of aquatic pH on fishes should take account of intergenerational effects and compensatory growth, as otherwise effects of acidification may be overestimated.  相似文献   

17.
Co‐occurring ocean warming, acidification and reduced carbonate mineral saturation have significant impacts on marine biota, especially calcifying organisms. The effects of these stressors on development and calcification in newly metamorphosed juveniles (ca. 0.5 mm test diameter) of the intertidal sea urchin Heliocidaris erythrogramma, an ecologically important species in temperate Australia, were investigated in context with present and projected future conditions. Habitat temperature and pH/pCO2 were documented to place experiments in a biologically and ecologically relevant context. These parameters fluctuated diurnally up to 10 °C and 0.45 pH units. The juveniles were exposed to three temperature (21, 23 and 25 °C) and four pH (8.1, 7.8, 7.6 and 7.4) treatments in all combinations, representing ambient sea surface conditions (21 °C, pH 8.1; pCO2 397; ΩCa 4.7; ΩAr 3.1), near‐future projected change (+2–4 °C, ?0.3–0.5 pH units; pCO2 400–1820; ΩCa 5.0–1.6; ΩAr 3.3–1.1), and extreme conditions experienced at low tide (+4 °C, ?0.3–0.7 pH units; pCO2 2850–2967; ΩCa 1.1–1.0; ΩAr 0.7–0.6). The lowest pH treatment (pH 7.4) was used to assess tolerance levels. Juvenile survival and test growth were resilient to current and near‐future warming and acidification. Spine development, however, was negatively affected by near‐future increased temperature (+2–4 °C) and extreme acidification (pH 7.4), with a complex interaction between stressors. Near‐future warming was the more significant stressor. Spine tips were dissolved in the pH 7.4 treatments. Adaptation to fluctuating temperature‐pH conditions in the intertidal may convey resilience to juvenile H. erythrogramma to changing ocean conditions, however, ocean warming and acidification may shift baseline intertidal temperature and pH/pCO2 to levels that exceed tolerance limits.  相似文献   

18.
The response of Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler, Calcidiscus leptoporus (G. Murray et V. H. Blackman) J. Schiller, and Syracosphaera pulchra Lohmann to elevated partial pressure of carbon dioxide (pCO2) was investigated in batch cultures. We reported on the response of both haploid and diploid life stages of these three species. Growth rate, cell size, particulate inorganic carbon (PIC), and particulate organic carbon (POC) of both life stages were measured at two different pCO2 (400 and 760 parts per million [ppm]), and their organic and inorganic carbon production were calculated. The two life stages within the same species generally exhibited a similar response to elevated pCO2, the response of the haploid stage being often more pronounced than that of the diploid stage. The growth rate was consistently higher at elevated pCO2, but the response of other processes varied among species. Calcification rate of C. leptoporus and of S. pulchra did not change at elevated pCO2, whereas it increased in E. huxleyi. POC production and cell size of both life stages of S. pulchra and of the haploid stage of E. huxleyi markedly decreased at elevated pCO2. It remained unaltered in the diploid stage of E. huxleyi and C. leptoporus and increased in the haploid stage of the latter. The PIC:POC ratio increased in E. huxleyi and was constant in C. leptoporus and S. pulchra. Elevated pCO2 has a significant effect on these three coccolithophore species, the haploid stage being more sensitive. This effect must be taken into account when predicting the fate of coccolithophores in the future ocean.  相似文献   

19.
It is essential to predict the impact of elevated Pco2 on marine organisms and habitats to anticipate the severity and consequences of future ocean chemistry change. Despite the importance of carry‐over effects in the evolutionary history of marine organisms, few studies have considered links between life‐history stages when determining how marine organisms will respond to elevated Pco2, and none have considered the link between adults and their offspring. Herein, we exposed adults of wild and selectively bred Sydney rock oysters, Saccostrea glomerata to elevated Pco2 during reproductive conditioning and measured the development, growth and survival response of their larvae. We found that elevated Pco2 had a negative impact on larvae of S. glomerata causing a reduction in growth, rate of development and survival. Exposing adults to elevated Pco2 during reproductive conditioning, however, had positive carry‐over effects on larvae. Larvae spawned from adults exposed to elevated Pco2 were larger and developed faster, but displayed similar survival compared with larvae spawned from adults exposed to ambient Pco2. Furthermore, selectively bred larvae of S. glomerata were more resilient to elevated Pco2 than wild larvae. Measurement of the standard metabolic rate (SMR) of adult S. glomerata showed that at ambient Pco2, SMR is increased in selectively bred compared with wild oysters and is further increased during exposure to elevated Pco2. This study suggests that sensitive marine organisms may have the capacity to acclimate or adapt to elevated Pco2 over the next century and a change in energy turnover indicated by SMR may be a key process involved.  相似文献   

20.
Coccolithophores are unicellular phytoplankton that produce calcium carbonate coccoliths as an exoskeleton. Emiliania huxleyi, the most abundant coccolithophore in the world's ocean, plays a major role in the global carbon cycle by regulating the exchange of CO2 across the ocean‐atmosphere interface through photosynthesis and calcium carbonate precipitation. As CO2 concentration is rising in the atmosphere, the ocean is acidifying and ammonium (NH4+) concentration of future ocean water is expected to rise. The latter is attributed to increasing anthropogenic nitrogen (N) deposition, increasing rates of cyanobacterial N2 fixation due to warmer and more stratified oceans, and decreased rates of nitrification due to ocean acidification. Thus, future global climate change will cause oceanic phytoplankton to experience changes in multiple environmental parameters including CO2, pH, temperature and nitrogen source. This study reports on the combined effect of elevated pCO2 and increased NH4+ to nitrate (NO3?) ratio (NH4+/NO3?) on E. huxleyi, maintained in continuous cultures for more than 200 generations under two pCO2 levels and two different N sources. Herein, we show that NH4+ assimilation under N‐replete conditions depresses calcification at both low and high pCO2, alters coccolith morphology, and increases primary production. We observed that N source and pCO2 synergistically drive growth rates, cell size, and the ratio of inorganic to organic carbon. These responses to N source suggest that, compared to increasing CO2 alone, a greater disruption of the organic carbon pump could be expected in response to the combined effect of increased NH4+/NO3? ratio and CO2 level in the future acidified ocean. Additional experiments conducted under lower nutrient conditions are needed prior to extrapolating our findings to the global oceans. Nonetheless, our results emphasize the need to assess combined effects of multiple environmental parameters on phytoplankton biology to develop accurate predictions of phytoplankton responses to ocean acidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号