首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous studies have demonstrated that FTO plays an important role in adipogenesis. Herein, we designed a small interfering RNA targeting FTO to knock down its endogenous expression and investigated its effects on the proliferation and differentiation of porcine intramuscular preadipocytes. Its possible mechanism was also investigated. We showed that FTO silencing significantly decreased the level of phospho-Histone H3 protein and inhibited the proliferation of porcine intramuscular preadipocytes. In addition, the expressions of peroxisome proliferators-activated receptor γ (PPARγ) and CAAT/enhancer binding protein (C/EBPα) were down-regulated, but the expression of β-catenin was up-regulated, by FTO silencing. Of specific interest here was that LiCl, a Wnt/β-catenin signaling specific activator, attenuated the FTO-induced upregulation of PPARγ and downregulation of β-catenin. Collectively, our data demonstrated that FTO silence decreased the proliferation and differentiation of porcine intramuscular preadipocytes, and FTO affects the porcine intramuscular preadipocytes differentiation might be via Wnt/β-catenin signaling pathway.  相似文献   

2.
3.
4.

Background

Stem cells are mainly characterized by two properties: self-renewal and the potency to differentiate into diverse cell types. These processes are regulated by different growth factors including members of the Wnt protein family. Wnt proteins are secreted glycoproteins that can activate different intracellular signaling pathways.

Scope of review

Here we summarize our current knowledge on the role of Wnt/β-catenin signaling with respect to these two main features of stem cells.

Major conclusions

A particular focus is given on the function of Wnt signaling in embryonic stem cells. Wnt signaling can also improve reprogramming of somatic cells towards iPS cells highlighting the importance of this pathway for self-renewal and pluripotency. As an example for the role of Wnt signaling in adult stem cell behavior, we furthermore focus on intestinal stem cells located in the crypts of the small intestine.

General significance

A broad knowledge about stem cell properties and the influence of intrinsic and extrinsic factors on these processes is a requirement for the use of these cells in regenerative medicine in the future or to understand cancer development in the adult. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

5.
6.
7.
The Wnt/ß-catenin signaling pathway controls important cellular events during development and often contributes to disease when dysregulated. Using high throughput screening we have identified a new small molecule inhibitor of Wnt/ß-catenin signaling, WIKI4. WIKI4 inhibits expression of ß-catenin target genes and cellular responses to Wnt/ß-catenin signaling in cancer cell lines as well as in human embryonic stem cells. Furthermore, we demonstrate that WIKI4 mediates its effects on Wnt/ß-catenin signaling by inhibiting the enzymatic activity of TNKS2, a regulator of AXIN ubiquitylation and degradation. While TNKS has previously been shown to be the target of small molecule inhibitors of Wnt/ß-catenin signaling, WIKI4 is structurally distinct from previously identified TNKS inhibitors.  相似文献   

8.
The Wnt/β-catenin pathway is an important, dysregulated pathway in several tumor types, including pancreatic ductal adenocarcinoma. Although the activation of this pathway is an important component of normal development, its aberrant activation resulting from activating or inactivating mutations in the CTNNB1 gene locus, or in the negative regulators AXIN and APC involving stabilization of β-catenin, and activation of target genes leads to a more aggressive phenotype, suggesting its potential value as a therapeutic target in the treatment of pancreatic ductal adenocarcinoma. A number of small molecule and biologic agents have now been developed for targeting this pathway. This review summarizes the current knowledge about the therapeutic potential of targeting the Wnt pathway with particular emphasis on preclinical/clinical studies in the treatment of pancreatic ductal adenocarcinoma.  相似文献   

9.

Background

During the development and progression of endometriotic lesions, excess fibrosis may lead to scarring, chronic pain, and altered tissue function. However, the cellular and molecular mechanisms of fibrosis in endometriosis remain to be clarified.

Objectives

The objective of the present study was to investigate whether the Wnt/β-catenin signaling pathway was involved in regulating the cellular and molecular mechanisms of fibrosis in endometriosis in vitro and to evaluate whether fibrosis could be prevented by targeting the Wnt/β-catenin pathway in a xenograft model of endometriosis in immunodeficient nude mice.

Methods

Seventy patients (40 with and 30 without endometriosis) with normal menstrual cycles were recruited. In vitro effects of small-molecule antagonists of the Tcf/β-catenin complex (PKF 115-584 and CGP049090) on fibrotic markers (alpha smooth muscle actin, type I collagen, connective tissue growth factor, fibronectin) and collagen gel contraction were evaluated in endometrial and endometriotic stromal cells from patients with endometriosis. In vitro effects of activation of the Wnt/β-catenin signaling pathway by treatment with recombinant Wnt3a on profibrotic responses were evaluated in endometrial stromal cells of patients without endometriosis. The effects of CGP049090 treatment on the fibrosis of endometriotic implants were evaluated in a xenograft model of endometriosis in immunodeficient nude mice.

Results

Treatment with PKF 115-584 and CGP049090 significantly decreased the expression of alpha smooth muscle actin, type I collagen, connective tissue growth factor and fibronectin mRNAs in both endometriotic and endometrial stromal cells with or without transforming growth factor-β1 stimulation. Both endometriotic and endometrial stromal cell-mediated contraction of collagen gels was significantly decreased by treatment with PKF 115-584 and CGP049090 as compared to that of untreated cells. The animal experiments showed that CGP049090 prevented the progression of fibrosis and reversed established fibrosis in endometriosis.

Conclusion

Aberrant activation of the Wnt/β-catenin pathway may be involved in mediating fibrogenesis in endometriosis.  相似文献   

10.
11.
Studies have suggested a possible correlation between the newly identified E3 ubiquitin ligase ring finger protein 146 (RNF146) and tumor development. However, until now, studies on RNF146 have been restricted to poly(ADP-ribosyl)ation and ubiquitin ligation, whereas the role of RNF146 in tumor biology has rarely been reported. In the present study, the role of RNF146 in non-small cell lung cancer (NSCLC) was investigated. The results showed that the expression of RNF146 was increased in clinical lung cancer samples and cell lines. RNF146 expression correlated with tumor size, differentiation level, lymphatic metastasis, pTNM staging, and prognosis of patients in stage I. RNF146 expression was negatively correlated with Axin expression but positively correlated with the nuclear expression of β-catenin in NSCLC tissues. RNF146 downregulated the expression of Axin in lung cancer cell lines and induced the expression and nuclear distribution of β-catenin. Overexpression of RNF146 in NSCLC cell lines increased the levels of cyclinD1, cyclinE, and CDK4, promoted cell cycle G0/G1-S transitions, and regulated cell proliferation. Overexpression of RNF146 led to upregulated levels of matrix metalloproteinases 2 and 7 and enhanced lung cancer cell invasiveness, events that were mediated by the classical Wnt/β-catenin signaling pathway. In summary, the data in the present study indicate that RNF146 regulated the development and progression of NSCLC by enhancing cell growth, invasion, and survival, suggesting that RNF146 may be a potential treatment target in NSCLC.  相似文献   

12.
13.
14.
The pronephric kidney controls water and electrolyte balance during early fish and amphibian embryogenesis. Many Wnt signaling components have been implicated in kidney development. Specifically, in Xenopus pronephric development as well as the murine metanephroi, the secreted glycoprotein Wnt-4 has been shown to be essential for renal tubule formation. Despite the importance of Wnt signals in kidney organogenesis, little is known of the definitive downstream signaling pathway(s) that mediate their effects. Here we report that inhibition of Wnt/β-catenin signaling within the pronephric field of Xenopus results in significant losses to kidney epithelial tubulogenesis with little or no effect on adjoining axis or somite development. We find that the requirement for Wnt/β-catenin signaling extends throughout the pronephric primordium and is essential for the development of proximal and distal tubules of the pronephros as well as for the development of the duct and glomus. Although less pronounced than effects upon later pronephric tubule differentiation, inhibition of the Wnt/β-catenin pathway decreased expression of early pronephric mesenchymal markers indicating it is also needed in early pronephric patterning. We find that upstream inhibition of Wnt/β-catenin signals in zebrafish likewise reduces pronephric epithelial tubulogenesis. We also find that exogenous activation of Wnt/β-catenin signaling within the Xenopus pronephric field results in significant tubulogenic losses. Together, we propose Wnt/β-catenin signaling is required for pronephric tubule, duct and glomus formation in Xenopus laevis, and this requirement is conserved in zebrafish pronephric tubule formation.  相似文献   

15.
16.
17.
18.
19.
Molecular Biology Reports - This study was designed to investigate whether genetic polymorphisms of the Wnt/β-catenin signaling pathway and its interactions are involved in the development of...  相似文献   

20.
In neural crest cell development, the expression of the cell adhesion proteins cadherin-7 and cadherin-11 commences after delamination of the neural crest cells from the neuroepithelium. The canonical Wnt signaling pathway is known to drive this delamination step and is a candidate for inducing expression of these cadherins at this time. This project was initiated to investigate the role of canonical Wnt signaling in the expression of cadherin-7 and cadherin-11 by treating neural crest cells with Wnt3a ligand. Expression of cadherin-11 was first confirmed in the neural crest cells for the chicken embryo. The changes in the expression level of cadherin-7 and -11 following the treatment with Wnt3a ligand were studied using real-time RT-PCR and immunostaining. Statistically significant up-regulation in the mRNA expression of cadherin-7 and cadherin-11 and in the amount of cadherin-7 and cadherin-11 protein found in cell-cell interfaces between neural crest cells was observed in response to Wnt, demonstrating that cadherin-7 and cadherin-11 expressed by the migrating neural crest cells can be regulated by the canonical Wnt pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号